

Phase II Environmental Site Assessment 15374 and 15450 Woodbine Avenue Gormley, Ontario

CLIENT:

Treasure Hill Homes 1-1681 Langstaff Road Vaughan, Ontario, L4K 5T3

ATTENTION:

Mr. Jason Bottoni Vice President

TYPE OF DOCUMENT:

Final Report

PROJECT NUMBER:

BRM-21010864-B0

PREPARED BY:

EXP Services Inc. 220 Commerce Valley Drive West, Suite 110 Markham, Ontario L3T 0A8 t: 905.695.3217 f: 905.695.0169

DATE SUBMITTED:

June 17, 2021

Legal Notification

This report was prepared by EXP Services Inc. for the account of *Treasure Hill Homes* (hereinafter referred to as 'the Client').

Any use which a third-party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third-parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third-party as a result of decisions made or actions based on this report.

Table of Contents

Leg	gal Notifica	tion	1				
Exe	ecutive Sun	nmary	3				
1.	Introduct	ion	1				
	1.1	General	1				
	1.2	Site Description and Background	1				
	1.3	Scope of Work	2				
	1.4	Site Assessment Criteria	2				
2.	Methodo	logy	4				
	2.1	Drilling	4				
	2.2	Soil Sampling	5				
	2.3	Monitoring Wells	8				
	2.4	Groundwater Sampling	9				
3.	Findings		10				
	3.1	Subsurface Conditions	10				
	3.2	Groundwater	11				
	3.3	Total Organic Vapour Monitoring	11				
4.	Soil and G	Groundwater Quality	13				
	4.1	General	13				
	4.2	Soil Characterization	13				
	4.3	Soil Quality	14				
	4.4	Groundwater Quality	14				
	4.5	Quality Assurance	14				
5.	. Summary of Findings						
6.	. Conclusion and Recommendation19						
7.	Reference	es	20				
8.	. General Limitations21						

List of Appendices

Appendix A – Figures

Appendix B – Borehole Logs

Appendix C – Summary of Analytical Results

Appendix D – Certificate of Analysis

Appendix E – Grain Size Analysis Results

June 17, 2021

Executive Summary

EXP Services Inc. (EXP) was retained by Treasure Hill Homes (hereinafter referred to as 'the Client') to conduct a Phase II Environmental Site Assessment (ESA) of the properties located at 15374 and 15450 Woodbine Avenue, Gormley, Ontario (hereinafter referred to as 'the Site') as shown on Figure 1: Site Location Plan.

EXP understands that this Phase II ESA is required for due diligence purposes in support of a proposed real estate transaction and that the filing of a Record of Site Condition (RSC) is not required at this time.

The purpose of this Phase II ESA was to assess whether the Areas of Potential Environmental Concern (APECs) identified in the 2021 EXP Phase I ESA had resulted in adverse subsurface environmental impacts to the Site. The methodologies of this investigation were completed in general accordance with Canadian Standards Association (CSA) Z769-00 (R2018) and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended.

It is understood that the Site is proposed to be redeveloped for residential use, including single-family dwellings, townhouse blocks and associated municipal roads and underground services. It is noted that this report is not intended for geotechnical design, construction planning, filing a Record of Site Condition (RSC) or for excess soils disposal purposes during construction.

The Site is located on the west side of Woodbine Avenue, approximately 230 m north of Aurora Road at the properties with the municipal addresses of 15374 and 15450 Woodbine Avenue, Gormley, Ontario. The Site is roughly rectangular in shape and measures approximately 333,000 m² (82.29 acres) in area according to the York Region Interactive Map (YRIM). The Site is currently under agricultural or other use, consisting primarily of open cornfields with several structures near the northeast corner.

Based on the results of the Phase II ESA conducted at the Site, the following findings are presented:

- 1) The drilling fieldwork for this Phase II ESA was conducted in conjunction with the geotechnical investigation of the Site between the period of May 26 and June 2, 2021. The geotechnical investigation consisted of twenty (20) boreholes drilled to depths ranging from 7.7 to 8.1 mbgs. Due to the areas of potential environmental concerns identified during the Phase I ESA, eight (8) additional boreholes (designated as BH101 to BH108) were drilled on Site to depths of 3.7 and 6.7 mbgs. Monitoring wells were installed in the boreholes BH6, BH11, BH18, BH102, BH103 and BH106 for groundwater monitoring and/or sampling.
- 2) In general, the stratigraphy of the site, as revealed in the boreholes, generally comprised fill and/or topsoil overlying native deposits of silty sand, sandy silt, silt, clayey silt and sandy silt till.
- 3) Fill was encountered surficially in Boreholes 3, 4, 7, 8 and 14. The fill in Borehole 3 and the upper level of Borehole 7 varied from silty sand to silt with topsoil inclusions. The fill in Boreholes 4, 7, 8 and 14 primarily consisted of topsoil. Moisture contents of the moist to very moist fill ranged from 9 to 30%. The fill extended to depths of approximately 1.5 to 3.7 m below existing grade. The deepest fill (i.e. greater than 3.5 m) is topsoil fill in Boreholes 4 and 7 located at the west part of 15450 Woodbine Avenue (north property). Fill was encountered in all 100-series boreholes, with the exception of borehole BH103. In general, the fill in the 100-series boreholes composed of moist to very moist sandy silt, silt with topsoil inclusion; brick or wood pieces were also found in the fill in boreholes BH101 and BH104. The fill unit in borehole BH105 (located in the open field at the northwest portion of the Site) extended to 4.0 mbgs. However, the fill unit within the remaining 100-series boreholes (located within proximity of the site

June 17, 2021

buildings) extended from surface (or beneath the concrete slab at borehole BH102) to depths ranging from 0.8 m to 2.2 mbgs.

- 4) No visual or olfactory evidence of petroleum hydrocarbon impact was detected in the fill or native soil samples. Soil vapour readings from soil samples were generally measured to be at low to negligible levels with the exception of BH102 where elevated soil vapour levels were identified. The soil samples with elevated soil vapour concentrations were selected for laboratory analysis.
- 5) Water levels in the installed monitoring wells (BH102, BH103 and BH106) were recorded in subsequent monitoring events on June 7 and 8, 2021, as shown on Table 5. Based on the static water levels measured on June 7, 2021, the groundwater levels in monitoring wells in BH6, BH11, BH18, BH102, BH103 and BH106 ranged from approximately 0.56 to 3.41 mbgs (corresponding to elevations of approximately 291.01 to 300.07 metres above mean sea level.
- 6) No apparent petroleum odours, sheens or free-phased petroleum products were observed in any of the monitoring wells.
- 7) The soil and groundwater data were compared to the Ontario Ministry of Environment, Conservation and Parks (MECP) Table 1 Full Depth Generic Site Condition Standards (SCS) for Residential/Parkland/Institutional/Industrial/Commercial/Community (RPI and ICC) property uses, medium and fine-textured soil listed in the MECP document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011 (the "MECP Table 1 SCS");
- 8) Selected soil samples were submitted for analysis of volatile organic compounds (VOCs), benzene, toluene, ethylbenzene and xylene (BTEX), petroleum hydrocarbons (PHCs) F1 to F4, metals and inorganic parameters, organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs). The concentrations of the analyzed parameters in all submitted soil samples met the MECP Table 1 SCS for Residential / Parkland / Institutional / Industrial / Commercial / Community property uses.
- 9) Selected groundwater samples were submitted for analysis of VOCs, BTEX, and PHCs. The concentrations of the analyzed parameters in all submitted groundwater samples met the MECP Table 1 SCS for Residential / Parkland / Institutional / Industrial / Commercial / Community property uses.

Based on the findings of this Phase II ESA, the following conclusion and recommendations are presented.

- The laboratory analytical results for all tested soil and groundwater samples met the applicable MECP Table 1
 Site Condition Standards for Residential / Parkland / Institutional / Industrial / Commercial / Community property uses, medium to fine-textured soils. No further investigation is considered warranted for the Site at this time.
- Groundwater monitoring wells installed during this investigation on Site may be maintained for on-going monitoring purposes. If the monitoring wells are no longer required, they should be decommissioned by a licensed well contractor in accordance with Ontario Regulation 903.

Introduction 1.

1.1 General

EXP Services Inc. (EXP) was retained by Treasure Hill Homes (hereinafter referred to as 'the Client') to conduct a Phase II Environmental Site Assessment (ESA) of the properties located at 15374 and 15450 Woodbine Avenue, Gormley, Ontario (hereinafter referred to as the 'Site') as shown on Figure 1: Site Location Plan.

The purpose of this Phase II ESA was to assess whether the Areas of Potential Environmental Concern (APECs) identified in the 2021 EXP Phase I ESA had resulted in adverse subsurface environmental impacts to the Site. EXP understands that this Phase II ESA is required for due diligence purposes in support of a proposed real estate transaction and that the filing of a Record of Site Condition (RSC) is not required at this time.

It is understood that the Site is proposed to be redeveloped for residential use, including single-family dwellings, townhouse blocks and associated municipal roads and underground services. It is noted that this report is not intended for geotechnical design, construction planning, filing a Record of Site Condition (RSC) or for excess soils disposal purposes during construction.

1.2 Site Description and Background

The Site is located on the west side of Woodbine Avenue, approximately 230 m north of Aurora Road at the properties with the municipal addresses of 15374 and 15450 Woodbine Avenue, Gormley, Ontario. The Site is roughly rectangular in shape and measures approximately 333,000 m² (82.29 acres) in area according to the York Region Interactive Map (YRIM).

The Site is currently under agricultural or other use, consisting primarily of open cornfields with several structures near the northeast corner. Clusters of trees were observed near the on-site structures and along the property limits. A tributary of Humber River (East Branch) situated in a south-to-north orientation transects the eastern extent of the Site. Structures at the northeast portion of the Site consisted of a residential structure (the 'House', currently boarded-up and inaccessible), a large barn/stable structure (the 'Barn/Stable', located southwest of the House), and a concrete pad which is presumably remnants of a storage area of a former barn/workshop structure located west of the House). No other permanent structures are present on the Site at the time of this Phase II ESA. As shown on the reviewed aerial photographs, a former residential dwelling, a former barn and a former shed appear to have been demolished in 2017 and 2018.

Throughout the years, the Site generally consisted of open agricultural fields with the northeast portion of the Site developed with existing and former structures dating from prior to the mid-1950s. Several of the rural structures were demolished in the late 1970s and replaced with the Barn/Stable and another structure (the former barn) located northeast of the Barn/Stable.

To the north and south, the Site is bounded by agricultural properties. To the east, the Site is bounded by Woodbine Avenue followed by agricultural properties. To the west, the Site is bounded by Highway 404 followed by a commercial retail plaza with office buildings.

June 17, 2021

1.3 Scope of Work

The Phase II ESA program is summarized below:

- Conduct underground utility clearance at the proposed borehole locations by Ontario One Call and a private utility locator to clear the boreholes of potential underground utilities prior to drilling;
- In conjunction with the geotechnical investigation which included the twenty (20) boreholes (designated as BH1 to BH20) drilled to depths ranging from 7.7 to 8.1 m below ground surface (mbgs), drill eight (8) boreholes (designated as BH101 to BH108) to depths of 3.6 m and 6.7 mbgs;
- In conjunction with the geotechnical investigation, install a total of six (6) monitoring wells in selected boreholes for groundwater level measurement and/or groundwater sampling;
- Conduct a field screening program on the recovered soil samples from selected boreholes for total organic vapours using a portable photo-ionizing detector (PID);
- Develop, purge and sample the newly installed monitoring wells to assess groundwater conditions and record water levels;
- Submit selected soil samples for chemical analysis of volatile organic compounds (VOCs), benzene, toluene, ethylbenzene and xylene (BTEX), petroleum hydrocarbons (PHCs) F1 to F4, organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), as well as metals, hydrides-forming metals and other regulated parameters (collectively as metals and inorganic parameters);
- Submit groundwater samples from the monitoring wells for chemical analysis of VOCs, BTEX, PHCs (F1 to F4);
- Complete a report outlining the results of the investigation. The analytical results will be compared to the applicable standards listed in "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act."

EXP understands that this work is not being completed for the purposes of filing of an RSC with the Ontario MECP. Should an RSC filing be required for this Site in the future, additional work may be required to meet the requirements of the MECP RSC Regulation (O. Reg. 153/04).

1.4 Site Assessment Criteria

The assessment criteria, Site Condition Standards (SCS), applicable to a given site in Ontario are established under subsection 168.4(1) of the Environmental Protection Act. Tabulated generic criteria are provided in the Ministry of the Environment, Conservation and Parks (MECP) document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated: April 15, 2011 (hereinafter referred to as "the MECP Standards"). These standards are based on site sensitivity (sensitive or non-sensitive), groundwater use (potable or non-potable), property use (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil type (coarse or medium to fine textured) and restoration depth (full or stratified restoration). In addition, site specific criteria may be established on the basis of the findings of a Risk Assessment carried out in accordance with Part IX and Schedule C of Ontario Regulation 153/04 (O. Reg. 153/04).

The MECP Standards specify Site Condition Standards (SCS) for soil, groundwater and sediment that are tabulated as follows:

Applicable to sites where background concentrations must be met (full depth) such as Table 1 sensitive sites where site-specific criteria have not been derived;

June 17, 2021

- Table 2 -Applicable to sites with potable groundwater and full depth restoration;
- Table 3 -Applicable to sites with non-potable groundwater and full depth restoration;
- Table 4 -Applicable to sites with potable groundwater and stratified restoration;
- Table 5 -Applicable to sites with non-potable groundwater and stratified restoration;
- Table 6 -Applicable to sites with potable groundwater and less than 2 metres of overburden above bedrock;
- Table 7 -Applicable to sites with non-potable groundwater and less than 2 metres of overburden above bedrock;
- Table 8 -Applicable to sites with potable groundwater and less than 30 metres from a water body; and,
- Table 9 -Applicable to sites with non-potable groundwater and less than 30 metres from a water body.

For assessment purposes, the Table 1 Full Depth Generic Site Condition Standards for Residential/Parkland/ Institutional/Industrial/Commercial/Community (RPI and ICC) property uses were selected as representative of current conditions. The selection of these standards is based on the following factors:

- The current use of the Site is agricultural/other and residential;
- The intended future use of the Site is residential;
- The Site includes lands that are defined as an area of natural significance. The wetland on the east-end of the Site was identified by the Ministry of Natural Resources and Forestry (MNRF) as having environmental significance;
- The Site includes a tributary of the Holland River (East Branch), which transects the property on the east-end;
- No active water supply wells are suspected to be present on, adjacent to or within 30 m of the Site;
- There is no intention to carry out a stratified restoration at the Site;
- The pH levels of representative soil samples were generally between 5 and 9 for surface soils and between 5 and 11 for subsurface soils;
- Soil at the Site was generally observed to be medium and fine-textured; and,
- More than two-thirds of the Site has an overburden thickness greater than 2 metres.

2. Methodology

2.1 Drilling

Prior to the commencement of drilling activities, the locations of public and private underground utilities at the Site were located by Ontario One Call and by using a private locator to avoid contacting them during the subsurface investigation program.

The drilling fieldwork for this Phase II ESA was conducted in conjunction with the geotechnical investigation of the Site between the period of May 26 and June 2, 2021. The geotechnical investigation consisted of twenty (20) boreholes drilled to depths ranging from 7.7 to 8.1 mbgs. Due to the areas of potential environmental concerns identified during the Phase I ESA, eight (8) additional boreholes (designated as BH101 to BH108) were drilled on Site to depths of 3.7 and 6.7 mbgs. Monitoring wells were installed in the boreholes BH6, BH11, BH18, BH102, BH103 and BH106 for groundwater monitoring and/or sampling.

Approximate borehole locations are shown on Figure 2: Borehole Location Plan. The rationale for the borehole locations is summarized in the table below:

TABLE 1 - RATIONALE OF BOREHOLE LOCATIONS

TABLE 1 - KATIONALE OF BOKEHOLE LOCATIONS							
BOREHOLE ID	MEDIA	LOCATION	SOURCE/RATIONALE				
BH 101	Soil	Exterior borehole, located within footprint of former residential house	Assess the presence and environmental quality of fill within the footprint of former residential dwelling, and potential subsurface impacts from potential historical use of heating oil in the former residential structure.				
BH 102	Soil Groundwater	Exterior borehole, located in the vicinity of a former barn/workshop and associated storage area	Assess the environmental quality of soil within the footprint of former Barn, and potential subsurface impacts from potential handling or storage materials in and around the former barn/workshop structure.				
BH 103	Soil Groundwater	Exterior borehole, located adjacent to remnants of former fill and vent pipes of a potential AST in basement of residential house	Assess potential subsurface impacts from potential historical use of heating oil in the existing House.				
BH 104	Soil	Exterior borehole, located adjacent to the grate drain inside the existing Barn/Stable	Assess potential subsurface impacts from the grate drain inside the Barn/Stable.				
BH 105	Soil	Exterior borehole, within area where significant previous ground disturbance was noted	Assess the presence and environmental quality of fill within the area where fill may have been placed.				
BH 106	Soil Groundwater	Exterior borehole, located adjacent to the grate drain inside the existing Barn/Stable	Assess potential subsurface impacts from the grate drain inside the Barn/Stable.				

June 17, 2021

BOREHOLE ID	MEDIA	LOCATION	SOURCE/RATIONALE
ВН 107	Soil	Exterior borehole, within area of former horse tracks	Assess near surface fill for near surface impacts from potential historical use of dust suppressant.
BH 108	Soil	Exterior borehole, located within footprint of former shed	Assess the presence and environmental quality of fill within the footprint of the former shed, and potential subsurface impacts from potential handling or storage materials in and around the former shed.
BH 3	Soil	Exterior borehole, southwest portion of the agricultural field	General characterization of fill / topsoil fill
BH 4	Soil	Exterior borehole, northwest portion of the agricultural field	General characterization of fill / topsoil fill
BH 7	Soil	Exterior borehole, southeast portion of the agricultural field	General characterization of fill / topsoil fill
BH 12	Soil	Exterior borehole, south-central portion of the agricultural field	General characterization of fill / topsoil fill
BH 14	Soil	Exterior borehole, east-central portion of the agricultural field	General characterization of fill / topsoil fill
BH 16	Soil	Exterior borehole, within area of former horse tracks	Assess near surface fill for near surface impacts from potential historical use of dust suppressant.

All boreholes were drilled by a specialist drilling contractor utilizing a track-mounted drilling rig with solid and hollow stem continuous flight augers.

The drilling activities were continuously monitored by EXP to record the physical characteristics of the soil, depth of soil sample collection and total depth of boreholes. No petroleum-based greases or solvents were used during the drilling procedures. Field observations are summarized on the borehole logs provided in Appendix B. Summaries of analytical results are presented in Appendix C. Copies of the laboratory Certificates of Analysis for the tested soil and groundwater samples are provided in Appendix D.

Representative samples of the subsoils were recovered in the boreholes at regular intervals using a split-spoon sampler. The sampling equipment was cleaned between sampling intervals using phosphate-free soap followed by rinsing with distilled water to reduce the potential for cross-contamination.

The fieldwork was supervised by an EXP environmental engineering staff member who monitored the drilling and sampling operations and logged the samples from the borings. The borehole locations were established by EXP personnel. Ground surface elevations at the borehole locations were derived from Can-Net elevations with the use of a Trimble TSC3 Controller.

2.2 Soil Sampling

Dedicated nitrile gloves (i.e., one pair per sample) were used during sample handling. In boreholes where volatile parameters may be present, a portion of each soil sample was placed in a sealed plastic bag and allowed to reach ambient temperature prior to field screening using a portable photo-ionizing detector (PID). The measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the

June 17, 2021

vertical and horizontal extent of soil contamination and the selection of soil samples for analysis. The vapour readings, in parts per million by volume (ppmv), are provided in the borehole logs in Appendix B. Samples were preserved in moisture tight containers and returned to EXP's laboratory for visual, textural and olfactory classification.

A portion of selected soil samples was field preserved using laboratory-supplied vials filled and pre-weighed with methanol. The field preservation reduces the potential for induced volatilization during storage/transport prior to analysis for VOCs, BTEX and PHC F1 parameters. Soil samples intended for other non-volatile chemical parameters were placed directly into pre-cleaned, laboratory-supplied glass sample jars or vials. All soil samples were placed in clean ice-packed coolers prior to and during transportation to the subcontract laboratory, Bureau Veritas Laboratories of Mississauga, Ontario. The samples were transported and submitted under Chain of Custody documentation.

Soil samples were selected for laboratory analysis based on their visual appearance, olfactory evidence of impacts, area of potential environmental concern being investigated, Site background and/or potential water-bearing zones, where applicable. The soil samples submitted for laboratory analysis are summarized in Table 2.

TARLE 2 - SLIMMARY OF SOIL SAMPLES SLIBMITTED FOR CHEMICAL ANALYSES

SAMPLE ID	DEPTH (m)	MATERIAL / STRATA	RATIONALE	ANALYSIS
BH 101				
BH-101 SS1	0.0 - 0.6	Fill	Assessment of fill materials	Metals & Inorganics
BH-101 SS4	2.3 - 2.7	Silt	Soil sample has highest CV reading	BTEX, PHCs
BH 102				
BH-102 SS5	3.1 - 3.7	Silt	Soil sample has highest CV reading	VOCs, PHCs
BH-102 SS5D	3.1 - 3.7	Silt	Field duplicate of BH-102 SS5	VOCs, PHCs
BH-102 SS6	3.8 - 4.4	Silt	Sample beneath soil sample with highest CV reading	VOCs, PHCs
BH-102 SS7	4.6 - 5.2	Silt	Sample beneath soil sample with highest CV reading	VOCs, PHCs
BH 103				
BH-103 SS6	3.8 - 4.4	Silt	Soil sample has highest CV reading, with consideration of location of AST in basement	BTEX, PHCs
BH 104				
BH-104 SS4	2.3-2.7	Silt	Assessment of soil from potential subsurface impacts from the grate drain inside the Barn/Stable	BTEX, PHCs
BH 105				
BH-105 SS1	0.0 - 0.6	Fill	Assessment of topsoil	OCPs

June 17, 2021

				Julie 17, 2021
SAMPLE ID	DEPTH (m)	MATERIAL / STRATA	RATIONALE	ANALYSIS
BH-105 SS2	0.8 - 1.4	Fill	Assessment of fill materials	Metals & Inorganics
BH 106				
BH-106 SS4	2.3 - 2.7	Silt	Soil sample has highest CV reading. Assessment of soil from potential subsurface impacts from the grate drain inside the Barn/Stable	BTEX, PHCs
BH 107				
BH-107 SS2	0.8 - 1.4	Fill	Assessment of near surface fill for near surface impacts from potential historical use of dust suppressant	PCBs
BH-107 SS2D	0.8 - 1.4	Fill	Field duplicate of BH-107 SS2	PCBs
BH-107 SS3	1.5 - 2.1	Fill	Soil sample has highest CV reading. Assessment of near surface fill for near surface impacts from potential historical use of dust suppressant	BTEX, PHCs
BH 108				
BH-108 SS2	0.8 - 1.4	Silt	Soil sample has highest CV reading	BTEX, PHCs
BH 3*				
BH-3 SS3	1.5 - 2.1	Fill (topsoil fill)	General characterization of fill / topsoil fill	Metals & Inorganics
BH 4*				
BH-4 SS1	0.0 - 0.6	Fill (topsoil fill)	General characterization of fill / topsoil fill	OCPs
BH-4 SS1D	0.0 - 0.6	Fill (topsoil fill)	Field duplicate of BH-4 SS1	OCPs
BH-4 SS3	1.5 - 2.1	Fill (topsoil fill)	General characterization of fill / topsoil fill	Metals & Inorganics
BH-4 SS3D	1.5 - 2.1	Fill (topsoil fill)	Field duplicate of BH-4 SS3	Metals & Inorganics
BH 7*				
BH-7 SS1	0.0 - 0.6	Fill	General characterization of fill / topsoil fill	OCPs
BH-7 SS5	3.1 - 3.7	Fill (topsoil fill)	General characterization of fill / topsoil fill	Metals & Inorganics
BH 12*	BH 12*			
BH-12 SS2	0.8 - 1.4	Topsoil/Silty Sand	General characterization of soil	OCPs
BH-12 SS3	1.5 - 2.1	Silty Sand/Silt	General characterization of soil	Metals & Inorganics

June 17, 2021

SAMPLE ID	DEPTH (m)	MATERIAL / STRATA	RATIONALE	ANALYSIS
BH 14*				
BH-14 SS2	0.8 - 1.4	Fill (topsoil fill)	General characterization of fill / topsoil fill	OCPs
BH-14 SS3	1.5 - 2.1	Topsoil/Silty Sand	General characterization of soil	Metals & Inorganics
BH 16*				
BH-16 SS2	0.8 - 1.4	Silt	Assessment of near surface fill for near surface impacts from potential historical use of dust suppressant	PCBs
BH-16 SS3	H-16 SS3 1.5 - 2.1 Clayey Silt ii		Assessment of near surface fill for near surface impacts from potential historical use of dust suppressant	BTEX, PHCs

NOTES:

- * Borehole drilled as part of the geotechnical investigation
- 1) PHC Petroleum Hydrocarbons
- 2) BTEX Benzene, Toluene, Ethylbenzene and Xylenes
- 3) VOC Volatile Organic Compounds
- 4) OCP Organochlorine Pesticides
- 5) PCB Polychlorinated biphenyls
- 6) Metals and inorganics Metals, hydride-forming metals, other regulated parameters
- 7) CV Combustible vapour

2.3 **Monitoring Wells**

Groundwater levels were observed in the open boreholes during fieldwork and measured in monitoring wells installed during this investigation.

Groundwater monitoring wells were installed in boreholes BH6, BH11, BH18, BH102, BH103 and BH106 upon the completion of drilling. The monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - Amended by O. Reg. 128/03 by a licensed well driller.

Monitoring wells consisted of 50 mm diameter PVC screen of 1.5 or 3.0 metres in length and an appropriate length of PVC riser pipe, as shown on Table 3. The annular space around the wells was backfilled with sand to a height of approximately 0.3 metres above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 metres below ground surface. The monitoring wells were completed with aboveground protective casings.

After completion of the monitoring well installation, the wells intended for groundwater sampling (BH102, BH103 and BH106) were developed on June 7, 2021 to remove fine sediment particles from the sand pack and enhance hydraulic communication with the surrounding formation waters. The monitoring wells were developed manually using dedicated Waterra® tubing equipped with a check ball valve. Water levels and standing water volumes in the monitoring wells were measured using a Solinst® electronic water level meter. The well construction is shown on the left margin of the borehole logs in Appendix B.

When the monitoring wells are no longer required, they must be decommissioned in accordance with the procedure outlined in the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - Amended by O. Reg. 128/03.

June 17, 2021

The installation details of the monitoring wells are summarized in Table 3.

TABLE 3 – MONITORING WELL INSTALLATION DETAILS

MONITORING WELL	SCREENED INTERVAL (mbgs)	Length of Screen (m)	FORMATION(S) SCREENED
BH102	3.0 - 6.0	3.0	Silt
BH103	3.0 - 6.0	3.0	Silt
BH106	3.0 - 6.0	3.0	Silt
BH 6	4.4-7.4	3.0	Silt
BH 11	6.1-7.6	1.5	Sandy Silt Till
BH 18	4.6-7.6	3.0	Silt

NOTES:

2.4 Groundwater Sampling

Groundwater level monitoring, purging and sampling was conducted during fieldwork in the monitoring wells installed at selected borehole locations.

On June 8, 2021, monitoring wells installed at BH102, BH103 and BH106 were purged using a low flow peristaltic pump while monitoring water quality parameters (i.e. pH, turbidity, specific conductivity and temperature) and groundwater levels for steady-state conditions. Representative groundwater samples were collected using a slow flow peristaltic pump once steady-state conditions occurred. No apparent petroleum odours, sheens or free-phased petroleum products were observed in the groundwater samples recovered from the monitoring wells.

Samples were collected in containers supplied by the laboratory and stored in a field cooler for transport. Analytical results are discussed in Section 4.4 of this report. A summary of the groundwater analyses carried out is provided in Table 4.

TABLE 4 – SUMMARY OF GROUNDWATER SAMPLES SUBMITTED FOR ANALYSIS

Monitoring Well	SAMPLE IDENTIFICATION	SAMPLE DATE (mm/dd/yyyy)	ANALYSIS
DU400	MW-102	06/08/2021	VOCs, PHCs
BH102	MW-102D (duplicate)	06/08/2021	VOCs, PHCs
BH103	BH/MW-103	06/08/2021	BTEX, PHCs
BH106	BH/MW-106	06/08/2021	BTEX, PHCs
NA	Trip Blank Lot #3699	-	VOCs

¹⁾ mbgs – metres below ground surface

June 17, 2021

Phase II Environmental Site Assessment 15374 and 15450 Woodbine Avenue, Gormley, Ontario Project Number: BRM-21010864-B0

3. Findings

3.1 Subsurface Conditions

The detailed soil profiles encountered in each borehole are provided on the attached borehole logs in Appendix B. Boundaries of soil indicated on the log sheets are inferred from non-continuous sampling and observations made in the field. They intended to reflect approximate transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

In general, the stratigraphy of the site, as revealed in the boreholes, generally comprised fill and/or topsoil overlying native deposits of silty sand, sandy silt, silt, clayey silt and sandy silt till.

A brief description of the stratigraphy, in order of depth, follows:

Surface Cover

A concrete slab of 150mm thick was encountered at surface in borehole BH102, within the footprint of the former Barn on Site. The remaining boreholes were drilled on unpaved ground surface on the exterior of the Site.

Topsoil

Original topsoil, consisting of approximately 200 to 360 mm dark brown sandy silt to silt with rootlets, was encountered surficially in Boreholes 1, 2, 5, 6, 9 to 13 and 15 to 20 and below the fill unit in Boreholes 4, 7, 8 and 14. A topsoil layer of 360mm thickness was encountered in borehole BH103, on the exterior of the existing residential house. No topsoil was encountered in the remaining 100-series boreholes

Topsoil measurements were carried out at the borehole locations only and were found to be variable.

Fill

Fill was encountered surficially in Boreholes 3, 4, 7, 8 and 14. The fill in Borehole 3 and the upper level of Borehole 7 varied from silty sand to silt with topsoil inclusions. The fill in Boreholes 4, 7, 8 and 14 primarily consisted of topsoil. Moisture contents of the moist to very moist fill ranged from 9 to 30%. The fill extended to depths of approximately 1.5 to 3.7 m below existing grade. The deepest fill (i.e. greater than 3.5 m) is topsoil fill in Boreholes 4 and 7 located at the west part of 15450 Woodbine Avenue (north property).

Fill was encountered in all 100-series boreholes, with the exception of borehole BH103. In general, the fill in the 100-series boreholes composed of moist to very moist sandy silt, silt with topsoil inclusion; brick or wood pieces were also found in the fill in boreholes BH101 and BH104. The fill unit in borehole BH105 (located in the open field at the northwest portion of the Site) extended to 4.0 mbgs. However, the fill unit within the remaining 100-series boreholes (located within proximity of the site buildings) extended from surface (or beneath the concrete slab at borehole BH102) to depths ranging from 0.8 m to 2.2 mbgs.

No visual or olfactory evidence of petroleum hydrocarbon impact was detected in the fill samples.

Native Soils

Native deposits of silty sand, sandy silt, silt, sandy silt till, sand, and clayey silt were encountered at varying depths in boreholes BH1-BH20. Native soil deposits encountered below the fill unit in the 100-series boreholes were predominantly silt which was generally brown, moist to saturated, and becoming grey in colour at depths of approximately 4.6 to 5.3 mbgs. In addition to silt, layers of native sandy silt, silty sand and sandy silt till were

June 17, 2021

encountered in three (3) borehole locations. Locally in BH103, the native sandy silt layer (approximately 400mm in thickness) overlies the silt stratum at depths of 0.3 to 0.7 mbgs. In BH105, the silty sand layer (approximately 500mm in thickness) overlies the silt stratum at depths of 4.0 to 4.5 mbgs. In BH107, the sandy silt till layer was found beneath the silt stratum at a depth of 3.0 mbgs to the terminating depth of the borehole.

No visual or olfactory evidence of petroleum hydrocarbon impact was detected in the native soil samples.

3.2 Groundwater

Upon completion of drilling, free groundwater was encountered in the open boreholes at depths of 5.49 mbgs and 2.44 mbgs in boreholes BH106 and BH107. All other 100-series boreholes were dry upon completion of drilling.

Water levels in the installed monitoring wells (BH102, BH103 and BH106) were recorded in subsequent monitoring events on June 7 and 8, 2021, as shown on Table 5. Based on the static water levels measured on June 7, 2021, the groundwater levels in monitoring wells in BH6, BH11, BH18, BH102, BH103 and BH106 ranged from approximately 0.56 to 3.41 mbgs (corresponding to elevations of approximately 291.01 to 300.07 metres above mean sea level).

It should be noted that groundwater levels are subject to seasonal fluctuations and can vary in response to prevailing climate conditions.

No apparent petroleum odours, sheens or free-phased petroleum products were observed in any of the monitoring wells.

C	June 7	, 2021	June 8	3, 2021			
BOREHOLE ID	WELL ELEVATION (masl)	SCREEN INTERVAL DEPTH (mbgs)	DEPOSIT SCREENED	DEPTH (mbgs)	ELEVATION (masl)	DEPTH (mbgs)	ELEVATION (masl)
BH102	299.56	3.0 - 6.0	Silt	2.55	295.41	2.56	294.25
BH103	296.07	3.0 - 6.0	Silt	3.03	292.49	4.19	292.48
BH106	299.79	3.0 - 6.0	Silt	3.18	295.56	3.41	295.33
вн6	301.43	4.4-7.4	Silt	1.68	299.75	-	-
BH11	303.48	6.1-7.6	Sandy Silt Till	3.41	300.07	-	-
BH18	291.57	4.6-7.6	Silt	0.56	291.01	-	-

TABLE 5 – SUMMARY OF GROUNDWATER LEVEL MEASUREMENTS

NOTES:

- 1) mbgs metres below ground surface
- 2) masl metres above mean sea level

3.3 Total Organic Vapour Monitoring

Total organic vapour (TOV) testing for volatile organic soil vapours in the headspace of each soil sample from Boreholes BH BH101 to BH108 was performed using a MiniRae® photoionization device (PID) in the field. The measurements were made by inserting the probe of the instrument into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings provide a real-time indication of the relative

June 17, 2021

concentration of organic vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of contamination and the selection of soil samples for analysis. The readings are provided on the borehole logs.

Soil vapour readings from soil samples were generally measured to be at low to negligible levels with the exception of BH102 where elevated soil vapour levels were identified. The soil samples with elevated soil vapour concentrations were selected for laboratory analysis.

June 17, 2021

4. Soil and Groundwater Quality

4.1 General

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative 'worst case' soil samples from each borehole was based on field visual or olfactory evidence of impacts, potential sources of impact and the presence of potential water bearing zones. Tabulated laboratory analytical results are included in Appendix C. Copies of the laboratory Certificates of Analysis for the tested soil and groundwater samples are provided in Appendix D.

4.2 Soil Characterization

4.2.1 pH

Two (2) soil samples representative of the surface soils and six (6) soil samples representative of the subsurface soil encountered at the Site were analyzed for pH. The pH levels were generally between 5 and 9 for surface soil and between 5 and 11 for subsurface soil.

4.2.2 Soil Texture Analysis

The native soil deposits encountered in the boreholes on Site primarily consisted of silty sand, sandy silt, silt, sandy silt till, sand, and clayey silt. Grain size analysis was carried out on three (3) soil samples representative of the predominant native deposits as part of the geotechnical investigation. The results of the grain size analysis are included in Appendix E.

A summary of the results is presented in Table 6 below:

Table 6 – Summary of Grain Size Analysis

Location	Soil Type	Grain Size Results	Soil Texture*
Borehole BH6 (1.5 – 2.0 m)	Silt	Over 50% passing #200 sieve	Medium to fine
Borehole BH11 (1.5 – 2.0 m)	Sandy Silt Till	Over 50% passing #200 sieve	Medium to fine
Borehole BH12 (0.75 – 1.2 m)	Silty Sand	Over 50% passing #200 sieve	Medium to fine

^{*}As defined by O.Reg. 153/04

Based on the grain size analyses completed, the soil texture on Site can be classified as medium to fine as defined by O.Reg. 153/04 (as amended).

June 17, 2021

4.3 Soil Quality

4.3.1 Benzene, Toluene, Ethylbenzene, Xylene (BTEX) and Petroleum Hydrocarbons (PHCs)

The concentrations of BTEX and PHCs in all analyzed soil samples met the MECP Table 1 SCS for Residential / Parkland / Institutional / Industrial / Commercial / Community property uses for medium to fine textured soils.

4.3.2 Volatile Organic Compounds (VOCs)

The concentrations of VOCs in all analyzed soil samples were below laboratory detection limits and met the MECP Table 1 SCS for Residential / Parkland / Institutional / Industrial / Commercial / Community property uses for medium to fine textured soils.

4.3.3 Metals and Inorganic Parameters

The concentrations of metals and inorganic parameters in all analyzed soil samples met the MECP Table 1 SCS for Residential / Parkland / Institutional / Industrial / Commercial / Community property uses for medium to fine textured soils.

4.3.4 Organochlorine Pesticides (OCPs)

The concentrations of OCPs in all analyzed soil samples were below laboratory detection limits and met the MECP Table 1 SCS for Residential / Parkland / Institutional / Industrial / Commercial / Community property uses for medium to fine textured soils.

4.3.5 Polychlorinated Biphenyls (PCBs)

The concentrations of PCBs in all analyzed soil samples were below laboratory detection limits and met the MECP Table 1 SCS for Residential / Parkland / Institutional / Industrial / Commercial / Community property uses for medium to fine textured soils.

4.4 Groundwater Quality

4.4.1 Benzene, Toluene, Ethylbenzene, Xylene (BTEX) and Petroleum Hydrocarbons (PHCs)

The concentrations of BTEX and PHCs in all analyzed groundwater samples met the MECP Table 1 SCS for Residential / Parkland / Institutional / Industrial / Commercial / Community property uses for medium to fine textured soils.

4.4.2 Volatile Organic Compounds (VOCs)

The concentrations of VOCs in all analyzed groundwater samples were either below laboratory limits or met the MECP Table 1 SCS for Residential / Parkland / Institutional / Industrial / Commercial / Community property uses for medium to fine textured soils.

4.5 Quality Assurance

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the fill/upper overburden materials at the Site. QA/QC measures included:

June 17, 2021

- the collection of soil samples following standard operating procedures;
- the implementation of decontamination procedures to minimize the potential for sample crosscontamination;
- the collection of recommended analytical test group specific volumes into pre-cleaned laboratory supplied containers provided with necessary preservatives as required;
- sample preservation in insulated coolers pre-chilled with ice and meeting holding time requirements; and,
- sample documentation including Chain of Custody protocols

Review of field activity documentation indicated that recommended sample volumes were collected from soil for each analytical test group into appropriate containers and preserved with proper chemical reagents, where applicable, in accordance with the protocols set out in the "Protocol for Analytical Methods used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", MOE, March 9, 2004, amended by O.Reg. 179/11 as of July 1, 2011. Samples were preserved at the required temperatures in pre-chilled insulated coolers and met applicable holding time requirements, when relinquished to the receiving laboratory.

A field QA/QC protocol was incorporated during soil sampling, consisting of duplicate samples to evaluate sampling precision. Trip blanks were included during groundwater sampling to evaluate the potential for sample cross-contamination during handling and transport.

The field duplicate sample results were quantitatively evaluated by calculating the relative percent difference (RPD). Assessment of the duplicate soil and groundwater samples analytical results showed that the results generally met analytical test-group-specific requirements for the purpose of this Phase II ESA. The concentrations of VOCs in the trip blank analyzed as part of this Phase II ESA were all below laboratory detection limits.

The subcontract laboratory used during this investigation, *Bureau Veritas Laboratories* (BV Labs), is accredited by the Standards Council of Canada/Canadian Association for Laboratory Accreditation (Accredited Laboratory No. 97), in accordance with ISO/IEC 17025:1999 – "General Requirements for the Competence of Testing and Calibration Laboratories" for the analysis of all parameters for all samples in the scope of work for which SCS have been established under Ontario Regulation 153/04.

Certificates of Analysis were received from BV Labs reporting the results of all the chemical analyses performed on the submitted soil samples. Copies of the BV Labs Certificates of Analysis are provided in Appendix D. Review of the Certificates of Analysis prepared by BV Labs indicates that they were in compliance with the requirements set out under subsection 47(3) of O.Reg. 511/09.

The analytical program conducted by BV Labs included analytical test group specific QA/QC measures to evaluate the accuracy and precision of the analytical results and the efficiency of analyte recovery during solute extraction procedures. The BV Labs laboratory QA/QC program consisted (where applicable) of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries (VOCs only) to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by BV Labs. The QA/QC results are reported as percent recoveries for matrix spikes, spike blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks.

The BV Labs QA/QC results were assessed against test group control limits in the case of spiked blanks, matrix spikes and surrogate recoveries and alert criteria in the case of method blanks and laboratory duplicates. Two QA/QC incidents were noted by BV Labs, as follows:

- (1) The recovery or RPD for Cyanide in soil was outside control limits. However, BV Labs indicated that the overall quality control for this analysis met acceptability criteria. No outstanding issues were noted by BV Labs for this incident.
- (2) The matrix spike recovery for Chromium (VI) in soil was below the lower control limit. However, BV Labs attributed this to the possibility of the reducing environment in the sample. BV Labs reanalyzed the matrix spike to confirm the result. No outstanding issues were noted by BV Labs for this incident.
- (3) The recovery of tetrachloroethylene in groundwater was below the lower control limit and may represent a low bias in some results for this analyte. Since the concentration of tetrachloroethylene in all the tested groundwater samples were below laboratory detection limits, this QA/QC incident would not affect the interpretation of the groundwater sample results.

Review of the remaining laboratory QA/QC results reported by BV Labs indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups.

5. Summary of Findings

Based on the results of the Phase II ESA conducted at the Site, the following findings are presented:

- 1) The drilling fieldwork for this Phase II ESA was conducted in conjunction with the geotechnical investigation of the Site between the period of May 26 and June 2, 2021. The geotechnical investigation consisted of twenty (20) boreholes drilled to depths ranging from 7.7 to 8.1 mbgs. Due to the areas of potential environmental concerns identified during the Phase I ESA, eight (8) additional boreholes (designated as BH101 to BH108) were drilled on Site to depths of 3.7 and 6.7 mbgs. Monitoring wells were installed in the boreholes BH6, BH11, BH18, BH102, BH103 and BH106 for groundwater monitoring and/or sampling.
- 2) In general, the stratigraphy of the site, as revealed in the boreholes, generally comprised fill and/or topsoil overlying native deposits of silty sand, sandy silt, silt, clayey silt and sandy silt till.
- 3) Fill was encountered surficially in Boreholes 3, 4, 7, 8 and 14. The fill in Borehole 3 and the upper level of Borehole 7 varied from silty sand to silt with topsoil inclusions. The fill in Boreholes 4, 7, 8 and 14 primarily consisted of topsoil. Moisture contents of the moist to very moist fill ranged from 9 to 30%. The fill extended to depths of approximately 1.5 to 3.7 m below existing grade. The deepest fill (i.e. greater than 3.5 m) is topsoil fill in Boreholes 4 and 7 located at the west part of 15450 Woodbine Avenue (north property). Fill was encountered in all 100-series boreholes, with the exception of borehole BH103. In general, the fill in the 100-series boreholes composed of moist to very moist sandy silt, silt with topsoil inclusion; brick or wood pieces were also found in the fill in boreholes BH101 and BH104. The fill unit in borehole BH105 (located in the open field at the northwest portion of the Site) extended to 4.0 mbgs. However, the fill unit within the remaining 100-series boreholes (located within proximity of the site buildings) extended from surface (or beneath the concrete slab at borehole BH102) to depths ranging from 0.8 m to 2.2 mbgs.
- 4) No visual or olfactory evidence of petroleum hydrocarbon impact was detected in the fill or native soil samples. Soil vapour readings from soil samples were generally measured to be at low to negligible levels with the exception of BH102 where elevated soil vapour levels were identified. The soil samples with elevated soil vapour concentrations were selected for laboratory analysis.
- 5) Water levels in the installed monitoring wells (BH102, BH103 and BH106) were recorded in subsequent monitoring events on June 7 and 8, 2021, as shown on Table 5. Based on the static water levels measured on June 7, 2021, the groundwater levels in monitoring wells in BH6, BH11, BH18, BH102, BH103 and BH106 ranged from approximately 0.56 to 3.41 mbgs (corresponding to elevations of approximately 291.01 to 300.07 metres above mean sea level.
- 6) No apparent petroleum odours, sheens or free-phased petroleum products were observed in any of the monitoring wells.
- 7) The soil and groundwater data were compared to the Ontario Ministry of Environment, Conservation and Parks (MECP) Table 1 Full Depth Generic Site Condition Standards (SCS) for Residential/Parkland/Institutional/Industrial/Commercial/Community (RPI and ICC) property uses, medium and fine-textured soil listed in the MECP document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011 (the "MECP Table 1 SCS");

- 8) Selected soil samples were submitted for analysis of volatile organic compounds (VOCs), benzene, toluene, ethylbenzene and xylene (BTEX), petroleum hydrocarbons (PHCs) F1 to F4, metals and inorganic parameters, organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs). The concentrations of the analyzed parameters in all submitted soil samples met the MECP Table 1 SCS for Residential / Parkland / Institutional / Industrial / Commercial / Community property uses.
- 9) Selected groundwater samples were submitted for analysis of VOCs, BTEX, and PHCs. The concentrations of the analyzed parameters in all submitted groundwater samples met the MECP Table 1 SCS for Residential / Parkland / Institutional / Industrial / Commercial / Community property uses.

6. Conclusion and Recommendation

Based on the findings of this Phase II ESA, the following conclusion and recommendations are presented.

- The laboratory analytical results for all tested soil and groundwater samples met the applicable MECP Table 1 Site Condition Standards for Residential / Parkland / Institutional / Industrial / Commercial / Community property uses, medium to fine-textured soils. No further investigation is considered warranted for the Site at this time.
- Groundwater monitoring wells installed during this investigation on Site may be maintained for on-going monitoring purposes. If the monitoring wells are no longer required, they should be decommissioned by a licensed well contractor in accordance with Ontario Regulation 903.

7. References

This study was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the Ministry of the Environment. Specific reference is made to the following:

- 1. "Phase II Environmental Site Assessment Z769-00 (2018)", Canadian Standards Association, Canadian Standards Association (CSA), March 2000, Reaffirmed 2018.
- 2. "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario," Ministry of the Environment of Ontario, December 1996;
- 3. The Ontario Water Resources Act R.R.O. 1990, Regulation 903 Amended by O. Reg. 128/03, August 2003;
- 4. "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," April 15, 2011;
- 5. "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act," March 2004 (as amended by O.Reg. 179/11);
- 6. Ontario Regulation 153/04 (made under the Environmental Protection Act), May 2004 (as amended by O.Reg. 179/11) (MOE);
- 7. Environmental Protection Act, R.S.O. 1990, Chapter E.19, as amended, September 2004;
- 8. "Phase I Environmental Site Assessment, 15374 and 15450 Woodbine Avenue, Gormley, Ontario" for Treasure Hill Homes, prepared by EXP, dated June 17, 2021.

June 17, 2021

8. General Limitations

The information presented in this report is based on a limited investigation designed to provide information to support an assessment of the current environmental conditions within the Site. The conclusions and recommendations presented in this report reflect Site conditions existing at the time of the investigation.

More specific information with respect to the conditions between samples, or the lateral and vertical extent of materials may become apparent during excavation operations. The interpretation of the borehole information must, therefore, be validated during any such excavation operations. Consequently, during the future development of the Site, conditions not observed during this investigation may become apparent. Should this occur, EXP should be contacted to assess the situation, and the need for additional testing and reporting. EXP has qualified personnel to provide assistance in regard to any future geotechnical and environmental issues related to this Site.

The environmental investigation was carried out to address the intent of applicable provincial Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the Ministry of Environment, Conservation and Parks. It should also be noted that current environmental Regulations, Guidelines, Policies, Standards, Protocols and Objectives are subject to change, and such changes, when put into effect, could alter the conclusions and recommendations noted throughout this report. Achieving the study objectives stated in this report has required us to arrive at conclusions based upon the best information presently known to us. No investigative method can completely eliminate the possibility of obtaining partially imprecise or incomplete information; it can only reduce the possibility to an acceptable level. Professional judgment was exercised in gathering and analyzing the information obtained and in the formulation of the conclusions. Like all professional persons rendering advice we do not act as absolute insurers of the conclusions we reach, but we commit ourselves to care and competence in reaching those conclusions.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the engineering profession. It is intended that the outcome of this investigation assist in reducing the client's risk associated with environmental impairment. Our work should not be considered 'risk mitigation'. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of Treasure Hill Homes and may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Yours truly,

EXP Services Inc.

So Ming Chiang, P.Eng. Senior Project Manager

Earth and Environmental Group

Simon Lan, P.Eng.

Manager, Markham Geotechnical Earth and Environmental Group

Appendix A - Figures

Appendix B – Borehole Logs

Project No	b. BRM-21010864-AO	8				Drawing No.	2
Project:	Preliminary Geotechnical	Investig	atio	on - Residential	Developm	ent Sheet No.	_1_ of _1_
Location:	15374 and 15450 Woodb	ine Aven	ue	, Gormley, Ont	ario		
Date Drille Drill Type:		May 31, 2021 CME 55		Auger Sample SPT (N) Value Dynamic Cone Test	<u> </u>	Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit	
Datum:	Geodetic		_	Shelby Tube		Undrained Triaxial at % Strain at Failure	\oplus
Dalum.	Geodelic		_	Field Vane Test	Š	Penetrometer	A
G S M B O L	Soil Description	ELEV. m 305.33	D E P T H	N Value 20 40 Shear Strength	60 80 MPa 0.2	Combustible Vapour Reading (p 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weigh	pm) S A Natural Unit P L Weight KN/m³
	TOPSOIL - 200mm dark brown sandy	305.1	0	Z	0.2	10 20 30	
	silt SILTY SAND - brown, moist, loose		1	6		×	
		303.9					
	SANDY SILT - brown, saturated, compact		2	17 0		×	
	SILT - occasional clay seams; brown and grey, saturated, compact to dense	303.2	2	16 Ö		*	
		-	3	28 O		×	
			4				
		-		20			
			5				
		-	6	43			
				O		×	
			7				
		297.2	8	42 O		×	
	END OF BOREHOLE	EJ1 .E					

Time	Water Level (m)	Depth to Cave (m)
On completion	7.01	7.62

BRM-21010864-AO Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading Auger Sample \boxtimes May 31, 2021 Date Drilled: × Natural Moisture SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description m Shear Strength 300.09 TOPSOIL - 250mm dark brown sandy 299.8 SILTY SAND - brown, very moist to wet, loose to ~0.75m, compact below 298.4 SILT - trace of gravel, occasional clay seams; brown, saturated, compact to - becoming grey 3 **END OF BOREHOLE**

Time	Water Level (m)	Depth to Cave (m)
On completion	4 .27	5.79

BRM-21010864-AO Project No. Drawing No. Project: Preliminary Geotechnical Investigation - Residential Development 1 of 1 Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading Auger Sample \boxtimes May 27, 2021 Date Drilled: Natural Moisture × SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ SYMBOL 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description m Shear Strength 302.64 FILL - silty sand to sandy silt, topsoil inclusions; brown, moist, loose Ô Ö 300.5 SILT - trace of gravel; brown, moist to saturated, compact to dense - becoming grey 294.5 **END OF BOREHOLE**

Time	Water Level (m)	Depth to Cave (m)
On completion	7.37	7.37

Project No.	BRM-21010864-AO					Drawing No.		5
Project:	Preliminary Geotechnical I	nvestiga	atio	on - Residentia	al Developm	ent Sheet No.	1	of 1
Location:	15374 and 15450 Woodbir							
Date Drilled: Drill Type: Datum:	May 28, 2021 CME 55 Geodetic		_	Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test	<u>○</u> □ □ □ □ □	Combustible Vapour Readin Natural Moisture Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer	×	-
S Y M B O	Soil Description	ELEV.	DEPTH	N Va	60 80 MPa	Combustible Vapour Reading (p 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weigh	· I A	Natural Unit Weight kN/m³
inclumois TOP mois SILT comp	SOIL - sandy silt; dark brown, t Y SAND - brown, moist, loose to	308.99	1 2 3 3	0.1 8 24 0 0 0 12 0 0	0.2			NVIII
- be	END OF BOREHOLE	300.9	7 8	370		×		

Time	Water Level (m)	Depth to Cave (m)
On completion	Ďrý	7.39

Project No.	BRM-21010864-AO	J									Drav	ving No)	(6
Project:	Preliminary Geotechnical I	Investig	atio	on - F	Resid	enti	al De	velo	pme	ent_	Sł	neet No	o1	(of 1
Location:	15374 and 15450 Woodbir	ne Aven	ue	, Gor	mley	, Or	ntario)							
Date Drilled:	May 26, 2021		_	Auger S			_	⊠)		Natural	stible Vap Moisture		ding	□ X	
Drill Type:	CME 55				c Cone ī	Γest	_	—			and Liquio ed Triaxia		—	- €)
Datum:	Geodetic			Shelby Field Va	Tube ane Test			=		% Strair Penetro	n at Failur meter	re	4	Ð	
						N Va	ماريد	S		Combust	ible Vapou	ır Readino	y (ppm)	TST	
G N N B C C C C C C C C C C C C C C C C C	Soil Description	ELEV. m	DEPTH		20 Strength	40	60	80 M	IPa	250		750	0	- M	Natural Unit Weight kN/m ³
TOP	SOIL - 250mm dark brown silt	305.06 304.8	0			0.1		0.2		10	20	30) 	Š	KIWIII
SAN	IDY SILT - brown, saturated, loose 0.75m, compact below		1	Ô	21 Ö						×				
SAN	ID - brown, moist, compact	303.8												M	
	, , ,				29 O					×					
	- trace of sand and gravel, sional clay seams; brown, saturated, pact	303.0	2	ö								×			
			3	11											
		-									1				
		-	5	Ö								*			
CLA stiff	YEY SILT - brown, saturated, very	299.6	6												
		-		å								×			
SAN satu	IDY SILT TILL - some gravel; grey, rated, compact	298.1	7											بالمرف المرام	
			8		26 O						×				
	END OF BOREHOLE														

Time	Water Level (m)	Depth to Cave (m)
On completion	5.69	5.69

BRM-21010864-AO Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading Auger Sample \boxtimes May 27, 2021 Date Drilled: × Natural Moisture SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description Shear Strength m 301.43 TOPSOIL - 360mm dark brown silt 301.1 SANDY SILT - brown, moist, loose 300.7 SILT - trace of sand; brown, moist to Ō saturated, loose to ~1.5m, compact to dense below Ö - wet sand layer 34 **O** - becoming grey **END OF BOREHOLE** NOTES: 1. Groundwater monitoring well installed to 7.47m; sealed with bentonite from 0.3 to 3.81m.

Time	Water Level (m)	Depth to Cave (m)
On completion	1.37	Borehole
After 11 days	1.68	Well

BRM-21010864-AO Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading Auger Sample \boxtimes May 28, 2021 Date Drilled: Natural Moisture × SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer N Value Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ SYMBOL 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description MPa Shear Strength m 306.92 FILL - sandy silt to silt, topsoil inclusions; brown, moist 306.2 topsoil; dark brown and black, moist to Ô Ö 303.3 TOPSOIL - silt; dark brown, moist 303.0 SILT - brown and grey, saturated, compact to dense **END OF BOREHOLE**

Time	Water Level (m)	Depth to Cave (m)
On completion	7.47	7.47

BRM-21010864-AO Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading Auger Sample \boxtimes May 31, 2021 Date Drilled: Natural Moisture × SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ SYMBOL 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description Shear Strength m 305.98 FILL - topsoil with silt inclusions; dark brown and brown, moist Ö 304.1 TOPSOIL - sandy silt; dark brown, 303.8 SILTY SAND - brown, moist, compact - becoming wet 302.0 SILT - occasional clay seams; brown, saturated, compact - becoming grey and dense 297.9 **END OF BOREHOLE**

Time	Water Level (m)	Depth to Cave (m)
On completion	3.96	5.49

Project No	b. <u>BRM-21010864-A</u> O	O								Draw	ing No		10
Project:	Preliminary Geotechnical I	nvestiga	atio	on - R	eside	ntial	Deve	Development Sheet No. 1 of					of <u>1</u>
Location:	15374 and 15450 Woodbin	ne Aven	ue	, Gor	mley,	Onta	ario						
Date Drille Drill Type: Datum:			_	Auger Sa SPT (N) Dynamic Shelby T Field Va	Value : Cone Te ube	est			Natural I Plastic a Undraine	Moisture and Liquid ed Triaxial at Failure	at	□ X ⊕	
S Y M B O	Soil Description	ELEV.	DEP		0 40	N Value	60 80		250	500	Reading (ppm 750 Content % Dry Weight)	S A M P L E S	Natural Unit Weight
L	TOPSOIL - 280mm dark brown silt	302.31	H 0	Shear S	otrengtn 0.	1	0.:	MPa 2	Atterbe		30	E S	Weight kN/m³
~	SANDY SILT - brown, moist, compact	302.0		8						×			
	SILT - trace of gravel; brown, moist, compact to dense	301.6	1	15 O						×			
			2	15)					×			
					30 Ö					×			
			3		27 O					×			
			4		36					V			
	OANDY OUT THE CONTRACT	296.8	5		0					×			
	SANDY SILT TILL - scattered gravel and cobbles; brown, moist with wet sand seams, dense to very dense		6		32 Ö				×				
			7			-0/00							
<u> </u>	END OF BOREHOLE	294.6				O			×				

Time	Water Level (m)	Depth to Cave (m)		
On completion	Ďrý	7.52		

BRM-21010864-AO Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading Auger Sample \boxtimes May 28, 2021 Date Drilled: × Natural Moisture SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description Shear Strength m 303.90 TOPSOIL - 330mm dark brown sandy 303.6 SILTY SAND - brown, moist, loose 303.2 SILT - brown, moist to saturated, Ó 301.8 SANDY SILT TILL - scattered gravel and cobbles; brown, moist with wet sand seams, very dense 296.2 **END OF BOREHOLE**

Time	Water Level (m)	Depth to Cave (m)
On completion	7.09	7.24

BRM-21010864-AO Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading Auger Sample \boxtimes May 26, 2021 Date Drilled: × Natural Moisture SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description Shear Strength m 303.48 TOPSOIL - 250mm dark brown silt 303.2 SILT - brown, saturated, compact 302.7 SANDY SILT TILL - scattered gravel and cobbles; brown, moist with wet sand seams, compact to very dense 295.7 **END OF BOREHOLE** Groundwater monitoring well installed to 7.54m; sealed with bentonite from 0.3 to 4.5m.

Time	Water Level (m)	Depth to Cave (m)	
On completion	7.47	Borehole	
After 12 days	3.41	Well	

BRM-21010864-AO Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading Auger Sample \boxtimes May 27, 2021 Date Drilled: × Natural Moisture SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description Shear Strength m 300.55 TOPSOIL - 250mm dark brown sandy 300.3 SILTY SAND - brown, moist, loose 298.9 ő SILT - brown, moist, compact 298.5 SANDY SILT TILL - scattered gravel and cobbles; brown, moist with wet sand seams, dense to very dense 33 **O** 292.7 END OF BOREHOLE

	Time	Water Level (m)	Depth to Cave (m)
0	n completion	7.29	7.52

BRM-21010864-AO Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading \boxtimes Auger Sample May 28, 2021 Date Drilled: × Natural Moisture SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description Shear Strength m 299.09 TOPSOIL - 360mm dark brown silt 298.7 SILT - brown, moist to saturated, $\overset{10}{O}$ ö 297.0 SANDY SILT TILL - scattered gravel and cobbles; brown, moist with wet sand seams, dense to very dense 291.3 **END OF BOREHOLE**

Time	Water Level (m)	Depth to Cave (m)
On completion	7.39	7.34

BRM-21010864-AO Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading Auger Sample \boxtimes May 26, 2021 Date Drilled: X Natural Moisture SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ SYMBOL 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description Shear Strength m 297.14 FILL - topsoil with sandy silt and silt inclusions; dark brown and brown, moist 295.6 TOPSOIL - sandy silt; dark brown, 295.3 moist **SILTY SAND** - topsoil-stained; 295.0 greenish-brown, wet, loose SILT - sand and gravel seams; brown, saturated, compact 293.1 SANDY SILT TILL - scattered gravel and cobbles; brown, saturated, compact - becoming grey, moist and very dense 289.4 **END OF BOREHOLE**

Time	Water Level (m)	Depth to Cave (m)
On completion	4.39	5.59

BRM-21010864-AO Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading Auger Sample \boxtimes May 27, 2021 Date Drilled: Natural Moisture × SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description Shear Strength m 296.42 TOPSOIL - 360mm dark brown silt 296.1 SILT - brown, moist to saturated, compact to dense - becoming grey 290.1 Ö SANDY SILT TILL - some gravel; grey, saturated, compact 16 0 288.3 **END OF BOREHOLE**

Time	Water Level (m)	Depth to Cave (m)
On completion	6.81	7.44

BRM-21010864-AO Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading Auger Sample \boxtimes May 31, 2021 Date Drilled: X Natural Moisture SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description m Shear Strength 297.72 TOPSOIL - 200mm dark brown sandy 297.5 297.3 SILTY SAND - brown, moist, compact SILT - brown, moist to saturated, compact 296.3 CLAYEY SILT - brown, saturated, very 295.0 SILT - brown, moist to saturated, compact to dense 32 O - becoming grey 289.6 **END OF BOREHOLE**

Time	Water Level (m)	Depth to Cave (m)
On completion	4.57	7.62
·		

Project No.	BRM-21010864-AO	8 01				• -,		Drawing No		18
Project:	Preliminary Geotechnical	Investiga	atio	on - Resid	dential	l Developm	ent_	Sheet No.	1_	of <u>1</u>
Location:	15374 and 15450 Woodb	ine Aven	ue	, Gormle	y, Ont	ario				
Date Drilled: Drill Type: Datum:	CME 55 Geodetic	ELEV.	_ _ _ _ _ _ _	Auger Sample SPT (N) Value Dynamic Cone Shelby Tube Field Vane Tes	st N Value		Natural Mo Plastic and Undrained % Strain at Penetrome	Liquid Limit I- Triaxial at Failure ter Vapour Reading (ppn 500 750	I A	
G M B O L	Soil Description	m	DEPTH	20 Shear Strength	า	60 80 MPa		Moisture Content % Limits (% Dry Weight)	P LES	Weight kN/m ³
TC	PSOIL - 330mm dark brown sandy	293.27 292.9	0	10	0.1	0.2	10	20 30	I S	
silt SII	t LTY SAND - brown, wet, compact			0				×		
III SII	LT - brown, saturated, compact	292.5		20						
			1	0				X		
		-		17						
			,	O				×		
			2							
		-		Ö						
			3							
				18				×		
SII	LTY SAND - seams of sandy silt and t, occasional; brown, wet, dense	289.3	4							
	becoming grey		5		45 Ö			×		
	occorning grey									
			6							
					Å3 Ö			×		
			7							
		_								
		295.2	8		43 O			×		
11:4-31	END OF BOREHOLE	285.2	-							
									\pm	

Time	Water Level (m)	Depth to Cave (m)
On completion	1.73	2.97

BRM-21010864-AO Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading Auger Sample \boxtimes May 25, 2021 Date Drilled: X Natural Moisture 0 🛭 SPT (N) Value Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer N Value Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description m Shear Strength 291.57 TOPSOIL - 340mm dark brown silt 291.2 SANDY SILT - brown, saturated, compact 290.8 SILT - trace of gravel, occasional clay Ö seams; brown, saturated, compact to dense - becoming grey \bigcirc^{33} 283.5 **END OF BOREHOLE** NOTES: 1. Groundwater monitoring well installed to 7.62m; sealed with bentonite from 0.3 to 3.96m.

Time	Water Level (m)	Depth to Cave (m)
On completion	7.01	Borehole
After 13 days	0.56	Well

BRM-21010864-AO 20 Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading Auger Sample \boxtimes May 25, 2021 Date Drilled: × Natural Moisture SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description m Shear Strength 291.94 TOPSOIL - 220mm dark brown sandy 291.7 SILTY SAND - brown, wet, loose 291.2 SILT - trace of sand, occasional clay ő seams; brown, saturated, compact to dense Ö - becoming grey Ö 283.8 **END OF BOREHOLE**

Time	Water Level (m)	Depth to Cave (m)
On completion	1.83	5.49

BRM-21010864-AO Project No. Drawing No. Preliminary Geotechnical Investigation - Residential Development 1 of 1 Project: Sheet No. 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading \boxtimes Auger Sample May 25, 2021 Date Drilled: × Natural Moisture SPT (N) Value OØ Plastic and Liquid Limit CME 55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Soil Description Shear Strength m 294.27 TOPSOIL - 240mm dark brown silt 294.0 SANDY SILT - brown, moist, compact 293.5 SILT - occasional clay seams; brown, moist to saturated, compact to dense 8 - becoming grey 46 **O** 286.2 **END OF BOREHOLE**

Water Level (m)	Depth to Cave (m)
7.31	7.62
	Level (m)

Project No.	BRM-21010864-BO	O				Drawing No.		2
Project:	Phase II Environmental S	ite Asse	SS	sment		Sheet No.	1_	of <u>1</u>
Location:	15374 and 15450 Woodb	ine Aver	ıue	e, Gormley, Ont	ario			
Date Drilled: Drill Type: Datum:	June 1, 2021 Track Mounted CME-55 Geodetic		_	Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test		Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer	— × ⊕ ▲	
GW MB OL FILL inclubrow loos	Soil Description - sand with some gravel; topsoil isions, pieces of brick and wood; vn, moist; no odour or staining; e to compact topsoil inclusions, wood pieces; vn and dark brown, moist; no ur or staining; compact - brown, saturated; no odour or ning; compact END OF BOREHOLE	ELEV. m 296.70	DEPTH 0 1 2 3	N Value 20 40 6 Shear Strength 0.1	80 80 MPa 0.2 0.8 L	Combustible Vapour Reading (pp 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight 10 20 30	A	Natural Unit Weight kN/m³

Depth to Cave (m)	Water Level (m)	Time
3.05	Drý	On Completion

BRM-21010864-BO Drawing No. 3 Project No. Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading \boxtimes Auger Sample June 1, 2021 X Date Drilled: Natural Moisture 0 🛭 SPT (N) Value Plastic and Liquid Limit Track Mounted CME-55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer N Value Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Unit Weight kN/m³ Soil Description 20 Shear Strength 298.44 **CONCRETE SLAB** - 150mm of 298.3 concrete slab Ŏ FILL - sand; brown, moist; no odour or staining; loose silt; topsoil inclusions; brown, moist to very moist; no odour or staining; loose to compact Ó ö 296.2 SILT - trace of gravel, occasional clay seams; brown, moist to saturated; no odour or staining; compact to dense 37 O ő 294.25 O O - becoming grey 291.7 **END OF BOREHOLE** 1) Stick-up groundwater monitoring well with 3.1 metre screen interval installed 6.10 metres below ground surface. Stick-up height of 1.12m

Time	Water Level (m)	Depth to Cave (m)
On Completion	5.43	(Well)
June 7, 2021	3.03	
June 8, 2021	4.19	

BRM-21010864-BO Project No. Drawing No. Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading \boxtimes Auger Sample June 1, 2021 X Date Drilled: Natural Moisture 0 🛭 SPT (N) Value Plastic and Liquid Limit Track Mounted CME-55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer N Value Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Unit Weight kN/m³ Soil Description 20 Shear Strength 0.2 295.04 TOPSOIL - 360mm of topsoil with silt; dark brown, very moist 294.7 Ö SANDY SILT - brown, moist; no odour or staining; loose 294.3 SILT - occasional clay seams; brown, moist to saturated; no odour or staining; compact to dense Ö Ö 292.48 Ö 45 **O** ő 48 **O** - becoming grey Ö 288.3 **END OF BOREHOLE** 1) Stick-up groundwater monitoring well with 3.1 metre screen interval installed 6.10 metres below ground surface. Stick-up height of 1.03m

Time	Water Level (m)	Depth to Cave (m)
On Completion	5.40	(Well)
June 7, 2021	2.55	
June 8, 2021	2.56	
	1	

Project No.	BRM-21010864-BO								Drawing No.		5
Project:	Phase II Environmental Sit	e Asse	SS	men	t				Sheet No.	1_	of <u>1</u>
Location:	15374 and 15450 Woodbir	ne Aver	าน	e, Go	rmle	y, Ont	tario				
Date Drilled: Drill Type:	Track Mounted CME-55		_	Auger Sample ☑ Na SPT (N) Value ☑ Pla Dynamic Cone Test				Natur Plasti	Combustible Vapour Reading Natural Moisture X Plastic and Liquid Limit Undrained Triaxial at		
Datum:	Geodetic				ane Test		• s		rometer	•	
S Y M B O L	Soil Description	ELEV. m 298.41	DEPTH	Shear	20 Strength		60 80		ustible Vapour Reading (pp. 250 500 750 tural Moisture Content % berg Limits (% Dry Weight) 10 20 30	IA	Natural Unit Weight kN/m³
FILL inclu no or silt, t brow stain	- sandy silt, some gravel; topsoil sions, wood pieces; brown, moist; dour or staining; compact race of gravel; topsoil inclusions; n, very moist; no odour or ing; loose to compact - brown and grey, moist to ated; no odour or staining; pact to dense	298.41	1 2	ð	38	5	0.2	0.8ppm 0.8ppm 0.6ppm			
		294.8	3			45 O		0.4ppm			
	END OF BOREHOLE										

Time	Water Level (m)	Depth to Cave (m)
On Completion	Drý	3.05

Project No.	BRM-21010864-BO	8 "				Drawing No		6
Project:	Phase II Environmental Sit	te Asse	ss	ment		Sheet No	<u>1_</u>	of <u>1</u>
Location:	15374 and 15450 Woodbir	ne Aver	านผ	e, Gormley, Ont	tario			
Date Drilled: Drill Type: Datum:	June 2, 2021 Track Mounted CME-55 Geodetic	Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test N Value		Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer Combustible Vapour Reading (ppm) S		Natural		
G M M B O	Soil Description	ELEV. m	DEPTH	Shear Strength	60 80 MPa	250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight)	SAMP LIES	Unit Weight kN/m³
mois stain	topsoil; black and dark brown, st to very moist; no odour or ning with topsoil; brown and dark brown, st; no odour or staining	306.66	1 2 3	3 0	0.2 0.51 0.81 1.01 1.21	Depth	uo line line line line line line line line	NVIII
SILT	'Y SAND - brown, moist; no	302.7	4	<u> </u>	0.81	ipm .		
odou SILT satu	ur or staining; loose - occasional clay seams; brown, rated; no odour or staining; pact to dense	302.2	5	17 O		ipm		
	•	300.0	6	31	0.8 ₁	ipm		
	END OF BOREHOLE							

Time	Water Level (m)	Depth to Cave (m)
On Completion	Drý	6.10

BRM-21010864-BO Drawing No. 7 Project No. Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 15374 and 15450 Woodbine Avenue, Gormley, Ontario Location: Combustible Vapour Reading \boxtimes Auger Sample June 2, 2021 X Date Drilled: Natural Moisture 0 🛭 SPT (N) Value Plastic and Liquid Limit Track Mounted CME-55 Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer N Value Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) G W L ELEV. Unit Weight kN/m³ Soil Description 20 Shear Strength m 0.1 0.2 298.74 FILL - sandy silt, some gravel; topsoil inclusions; brown, moist; no odour or 39 O staining; compact 298.0 SILT - occasional clay seams; brown, moist to saturated; no odour or staining; compact to dense 45 **O** 295.33 - becoming grey 292.0 **END OF BOREHOLE** 1) Stick-up groundwater monitoring well with 3.1 metre screen interval installed 6.10 metres below ground surface. Stick-up height of 1.05m

Time	Water Level (m)	Depth to Cave (m)
On Completion	5.49	(Well)
June 7, 2021	3.18	
June 8, 2021	3.41	

Project	No.	BRM-21010864-BO	Drawing No.		8						
Project:		Phase II Environmental Sit	Sheet No.	1_	of <u>1</u>						
Location	n:	15374 and 15450 Woodbin	ne Aver	าน	e, Go	rmley, (Ontario				
Date Dr	· · · · · · · · · · · · · · · · · · ·				Auger S SPT (N)	Value	O ⊠ ⊠	Natura	stible Vapour Reading Moisture and Liquid Limit	_ ×	(
Drill Typ	oe:	Track Mounted CME-55		_	Dynamic Shelby 1	Cone Test Tube			ned Triaxial at in at Failure	\oplus	
Datum:		Geodetic		_	Field Va	ne Test	\$	Penetro	ometer	A	
G M B O L		Soil Description	ELEV. m	DEPTH		N ' 20 40 Strength 0.1	Value 60 80	MPa Atterb	stible Vapour Reading (pp 50 500 750 ural Moisture Content % erg Limits (% Dry Weight) 0 20 30	I A	Natural Unit Weight kN/m³
	brow comp		297.63 296.9	0	16 C		0.2	0.6ppm	20 30		
	_inclu	y silt, some gravel; topsoil sions; brown, very moist; no ir or staining; compact	_	1		26 O		0.6¢pm			
	CII T	brown acturated no adour or	295.6	2	ö			0.8ppm			
-	stain	- brown, saturated; no odour or ing; loose	294.6		Ô			0.8ppm			
	SANI brow dens	DY SILT TILL - some gravel; n, saturated; no odour or staining; e	294.0	3		32 O		0.6ppm			
		END OF BOREHOLE									

Time	Water Level (m)	Depth to Cave (m)
On Completion	2.44	3.05

Project No.	BRM-21010864-BO	0						1	Drawing No	9
Project:	Phase II Environmental Si		Sheet No1_ of _1_							
Location:	15374 and 15450 Woodbi	nue	, G	orml	ey, Ont	ario				
Date Drilled: Drill Type: Datum:	June 1, 2021 Track Mounted CME-55 Geodetic			Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test		<u>○</u> □ □ □ □	Natural Moi	Liquid Limit — Triaxial at Failure	X —O	
G N M B O L FILL	Soil Description - sandy silt, some gravel; topsoil sions; brown, moist; no odour or	ELEV. m 298.65	DEPHH 0	Shea	20 ar Streng		60 80	250	Vapour Reading (ppm) 500 750 Moisture Content % Limits (% Dry Weight) 20 30	S A Natural Unit Weight kN/m³
stain	- brown, moist to saturated; no ur or staining; compact	297.9 	1		Ö 21 Ö			0.8apm		
		-	2			ð		0.8spm		
			3			Ö 49		0.4ppm		
	END OF BOREHOLE									

Time	Water Level (m)	Depth to Cave (m)
On Completion	Drý	3.05

Phase II Environmental Site Assessment 15374 and 15450 Woodbine Avenue, Gormley, Ontario Project Number: BRM-21010864-B0 June 17, 2021

Appendix C – Summary of Analytical Results

Table C1 - Petroleum Hydrocarbons (PHCs) and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) in Soil

						Samp	ole ID							
	MECP Table 1			BV Labs Job ID / Sample ID										
	RPIICC			Sample Collection Date										
						Sample Coll	ection Time							
Parameter	Criteria 1	Units	RDL	BH-101 SS4 (2.3-2.7M)	BH-102 SS5 (3.1-3.7M)	BH-102 SS5D (3.1-3.7M)	BH-102 SS6 (3.8-4.4M)	BH-102 SS7 (4.6-5.2M)	BH-103 SS6 (3.8-4.4M)					
				C1F3550 / PTI255	C1F3550 / PTI256	C1F3550 / PTI257	C1F3550 / PTI258	C1F3550 / PTI259	C1F3550 / PTI260					
				Jun 01, 2021	Jun 01, 2021	Jun 01, 2021	Jun 01, 2021	Jun 01, 2021	Jun 01, 2021					
				12:40 PM	09:00 AM	09:00 AM	08:15 AM	08:30 AM	02:00 PM					
Petroleum Hydrocarbons														
F1 (C6-C10)	25	ug/g	10	<10	<10	<10	<10	<10	<10					
F1 (C6-C10) - BTEX	25	ug/g	10	<10	<10	<10	<10	<10	<10					
F2 (C10-C16)	10	ug/g	10	<10	<10	<10	<10	<10	<10					
F3 (C16-C34)	240	ug/g	50	<50	51	<50	68	80	<50					
F4 (C34-C50)	120	ug/g	50	<50	<50	<50	<50	<50	<50					
Reached Baseline at C50		ug/g		YES	YES	YES	YES	YES	YES					
F4G (Gravimetric)		ug/g		-	-	-	-	-	-					
ВТЕХ														
Benzene	0.02	ug/g	0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020					
Toluene	0.2	ug/g	0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020					
Ethylbenzene	0.05	ug/g	0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020					
m+p-Xylene		ug/g	0.020 - 0.040	<0.040	<0.020	<0.020	<0.020	<0.020	<0.040					
o-Xylene		ug/g	0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020					
Xylenes, Total	0.05	ug/g	0.020 - 0.040	<0.040	<0.020	<0.020	<0.020	<0.020	<0.040					

Legend	
To Be Announced	ТВА
Exceeds one Criteria	Result
DL > Criteria	Result
Criteria 1	Reg153/04 T1-Soil/Res

Table C1 - Petroleum Hydrocarbons (PHCs) and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) in Soil

						Sample ID								
	MECP Table 1				BV Labs Job ID / Sample ID									
	RPIICC			Sample Collection Date										
						Sample Collection Time								
Parameter	Criteria 1	Units	RDL	BH-104 SS4 (2.3-2.7M)	BH-106 SS4 (0.8-1.4M)	BH-107 SS3 (1.5-2.1M)	BH-108 SS2 (0.8-1.4M)	BH-16 SS3 (1.5-2.1M)						
				C1F3550 / PTI261	C1F3550 / PTI264	C1F3550 / PTI267	C1F3550 / PTI268	C1F3550 / PTI253						
				Jun 02, 2021	Jun 02, 2021	Jun 02, 2021	Jun 02, 2021	May 31, 2021						
				02:20 PM	11:20 AM	02:55 PM	03:15 PM							
Petroleum Hydrocarbons														
F1 (C6-C10)	25	ug/g	10	<10	<10	<10	<10	<10						
F1 (C6-C10) - BTEX	25	ug/g	10	<10	<10	<10	<10	<10						
F2 (C10-C16)	10	ug/g	10	<10	<10	<10	<10	<10						
F3 (C16-C34)	240	ug/g	50	<50	<50	<50	<50	54						
F4 (C34-C50)	120	ug/g	50	<50	<50	<50	<50	<50						
Reached Baseline at C50		ug/g		YES	YES	YES	YES	YES						
F4G (Gravimetric)		ug/g		-	-	-	-	-						
втех														
Benzene	0.02	ug/g	0.020	<0.020	<0.020	<0.020	<0.020	<0.020						
Toluene	0.2	ug/g	0.020	<0.020	<0.020	<0.020	<0.020	<0.020						
Ethylbenzene	0.05	ug/g	0.020	<0.020	<0.020	<0.020	<0.020	<0.020						
m+p-Xylene		ug/g	0.020 - 0.040	<0.040	<0.040	<0.040	<0.040	<0.040						
o-Xylene		ug/g	0.020	<0.020	<0.020	<0.020	<0.020	<0.020						
Xylenes, Total	0.05	ug/g	0.020 - 0.040	<0.040	<0.040	<0.040	<0.040	<0.040						

Legend	
To Be Announced	ТВА
Exceeds one Criteria	Result
DL > Criteria	Result
Criteria 1	Reg153/04 T1-Soil/Res

					Came	ale ID			
	MESON Tolder			Sample ID					
	MECP Table 1			BV Labs Job ID / Sample ID					
	RPIICC			Sample Collection Date Sample Collection Time					
		11-25	95:	DI 402 CCE /2 1 2 72 "	1		DU 403 CC7 / 1 C 5 01 "		
Parameter	Criteria 1	Units	RDL	BH-102 SS5 (3.1-3.7M)	BH-102 SS5D (3.1-3.7M)	BH-102 SS6 (3.8-4.4M)	BH-102 SS7 (4.6-5.2M)		
				C1F3550 / PTI256	C1F3550 / PTI257	C1F3550 / PTI258	C1F3550 / PTI259		
				Jun 01, 2021	Jun 01, 2021	Jun 01, 2021	Jun 01, 2021		
				09:00 AM	09:00 AM	08:15 AM	08:30 AM		
Volatile Organic Compounds									
Benzene	0.02	ug/g	0.020	<0.020	<0.020	<0.020	<0.020		
Toluene	0.2	ug/g	0.020	<0.020	<0.020	<0.020	<0.020		
Ethylbenzene	0.05	ug/g	0.020	<0.020	<0.020	<0.020	<0.020		
m+p-Xylene		ug/g	0.020 - 0.040	<0.020	<0.020	<0.020	<0.020		
o-Xylene		ug/g	0.020	<0.020	<0.020	<0.020	<0.020		
Xylenes, Total	0.05	ug/g	0.020 - 0.040	<0.020	<0.020	<0.020	<0.020		
Acetone	0.5	ug/g	0.50	<0.50	<0.50	<0.50	<0.50		
Bromodichloromethane	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Bromoform	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Bromomethane	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Carbon Tetrachloride	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Chlorobenzene	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Chloroform	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Dibromochloromethane	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
1,2-Dichlorobenzene	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
1,3-Dichlorobenzene	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
1,4-Dichlorobenzene	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Dichlorodifluoromethane	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
1,1-Dichloroethane	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
1,2-Dichloroethane	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
1,1-Dichloroethylene	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
cis-1,2-Dichloroethylene	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
trans-1,2-Dichloroethylene	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
1,2-Dichloropropane	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
cis-1,3-Dichloropropene	0.05	ug/g	0.030	<0.030	<0.030	<0.030	<0.030		
trans-1,3-Dichloropropene	0.05	ug/g	0.040	<0.040	<0.040	<0.040	<0.040		
1,3-Dichloropropene (cis+trans)	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Ethylene Dibromide	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Hexane (n-Hexane)	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Methyl Ethyl Ketone (MEK)	0.5	ug/g	0.50	<0.50	<0.50	<0.50	<0.50		
Methyl Isobutyl Ketone (MIBK)	0.5	ug/g	0.50	<0.50	<0.50	<0.50	<0.50		
Methyl tert-butyl ether (MTBE)	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Methylene Chloride (Dichloromethane)	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Styrene	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
1,1,1,2-Tetrachloroethane	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
1,1,2,2-Tetrachloroethane	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Tetrachloroethylene	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
1,1,1-Trichloroethane	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
1,1,2-Trichloroethane	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Trichloroethylene	0.05	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Trichlorofluoromethane	0.25	ug/g	0.050	<0.050	<0.050	<0.050	<0.050		
Vinyl Chloride	0.02	ug/g	0.020	<0.020	<0.020	<0.020	<0.020		
1,4-Dioxane									
1,4-Dioxane		ug/g		-	-	-	-		
		J-0	1				1		

Legend	
To Be Announced	TBA
Exceeds one Criteria	Result
DL > Criteria	Result
Criteria 1	Reg153/04 T1-Soil/Res

Table C3 - Organochlorine Pesticides (OCs) and Polychlorinated Biphenyls (PCBs) in Soil

				Sample ID						
	MECP Table 1					BV Labs Job I	D / Sample ID			
	RPIICC			Sample Collection Date						
						Sample Coll	ection Time			
Parameter	Criteria 1	Units	RDL	BH-105 SS1 (0.0-0.6M)	BH-107 SS2 (0.8-1.4M)	BH-107 SS2D (0.8-1.4M)	BH-12 SS2 (0.8-1.4M)	BH-14 SS2 (0.8-1.4M)	BH-16 SS2 (0.8-1.4M)	
				C1F3550 / PTI262	C1F3550 / PTI265	C1F3550 / PTI266	C1F3550 / PTI241	C1F3550 / PTI243	C1F3550 / PTI252	
				Jun 02, 2021	Jun 02, 2021	Jun 02, 2021	May 27, 2021	May 26, 2021	May 31, 2021	
				08:30 AM	02:45 PM	02:45 PM				
Polychlorinated Biphenyls (PCBs)										
Aroclor 1242		ug/g	0.010 - 0.015	<0.015	<0.010	<0.010	<0.015	<0.015	<0.010	
Aroclor 1248		ug/g	0.010 - 0.015	<0.015	<0.010	<0.010	<0.015	<0.015	<0.010	
Aroclor 1254		ug/g	0.010 - 0.015	<0.015	<0.010	<0.010	<0.015	<0.015	<0.010	
Aroclor 1260		ug/g	0.010 - 0.015	<0.015	<0.010	<0.010	<0.015	<0.015	<0.010	
Total Polychlorinated Biphenyls (PCBs)	0.3	ug/g	0.010 - 0.015	<0.015	<0.010	<0.010	<0.015	<0.015	<0.010	
Organochlorine Pesticides (OCs)										
Aldrin	0.05	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
alpha-Chlordane	0.05	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
gamma-Chlordane	0.05	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Total Chlordane	0.05	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
o,p-DDD	0.05	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
p,p-DDD	0.05	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Total DDD		ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
o,p-DDE	0.05	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
p,p-DDE	0.05	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Total DDE		ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
o,p-DDT	1.4	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
p,p-DDT	1.4	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Total DDT		ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Dieldrin	0.05	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Endosulfan I	0.04	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Endosulfan II (beta)	0.04	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Total Endosulfan		ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Endrin	0.04	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Heptachlor	0.05	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Heptachlor epoxide	0.05	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	=	
Hexachlorobenzene	0.01	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Hexachlorobutadiene	0.01	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	=	
gamma-Hexachlorocyclohexane (Lindane)	0.01	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Hexachloroethane	0.01	ug/g	0.0020	<0.0020	-	-	<0.0020	<0.0020	-	
Methoxychlor	0.05	ug/g	0.0050	<0.0050	=	=	<0.0050	<0.0050	ē	

Legend	
To Be Announced	ТВА
Exceeds one Criteria	Result
DL > Criteria	Result
Criteria 1	Reg153/04 T1-Soil/Res

Table C3 - Organochlorine Pesticides (OCs) and Polychlorinated Biphenyls (PCBs) in Soil

				Sample ID					
	MECP Table 1				BV Labs Job ID / Sample ID				
	RPIICC				Sample Collection Date				
				Sample Collection Time					
Parameter	Criteria 1	Units	RDL	BH-4 SS1 (0.0-0.6M)	BH-4 SS1D (0.0-0.6M)	BH-7 SS1 (0.0-0.6M)			
				C1F3550 / PTI235	C1F3550 / PTI236	C1F3550 / PTI239			
				May 28, 2021	May 28, 2021	May 28, 2021			
Polychlorinated Biphenyls (PCBs)									
Aroclor 1242		ug/g	0.010 - 0.015	<0.015	<0.015	<0.015			
Aroclor 1248		ug/g	0.010 - 0.015	<0.015	<0.015	<0.015			
Aroclor 1254		ug/g	0.010 - 0.015	<0.015	<0.015	<0.015			
Aroclor 1260		ug/g	0.010 - 0.015	<0.015	<0.015	<0.015			
Total Polychlorinated Biphenyls (PCBs)	0.3	ug/g	0.010 - 0.015	<0.015	<0.015	<0.015			
Organochlorine Pesticides (OCs)									
Aldrin	0.05	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
alpha-Chlordane	0.05	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
gamma-Chlordane	0.05	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Total Chlordane	0.05	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
o,p-DDD	0.05	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
p,p-DDD	0.05	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Total DDD		ug/g	0.0020	<0.0020	<0.0020	<0.0020			
o,p-DDE	0.05	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
p,p-DDE	0.05	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Total DDE		ug/g	0.0020	<0.0020	<0.0020	<0.0020			
o,p-DDT	1.4	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
p,p-DDT	1.4	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Total DDT		ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Dieldrin	0.05	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Endosulfan I	0.04	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Endosulfan II (beta)	0.04	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Total Endosulfan		ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Endrin	0.04	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Heptachlor	0.05	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Heptachlor epoxide	0.05	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Hexachlorobenzene	0.01	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Hexachlorobutadiene	0.01	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
gamma-Hexachlorocyclohexane (Lindane)	0.01	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Hexachloroethane	0.01	ug/g	0.0020	<0.0020	<0.0020	<0.0020			
Methoxychlor	0.05	ug/g	0.0050	<0.0050	<0.0050	<0.0050			

Legend	
To Be Announced	TBA
Exceeds one Criteria	Result
DL > Criteria	Result
Criteria 1	Reg153/04 T1-Soil/Res

Table C4 - Metals and Inorganics in Soil

							Sam	ple ID				
	MECP Table 1			BV Labs Job ID / Sample ID								
	RPIICC							lection Date				
				Sample Collection Time								
Parameter	Criteria 1	Units	RDL	BH-101 SS1 (0.0-0.6M)	BH-105 SS2 (0.8-1.4M)	BH-105 SS2 (U.8-1.4MI) Lab-	BH-12 SS3 (1.5-2.1M)	BH-14 SS3 (1.5-2.1M)	BH-3 SS3 (1.5-2.1M)	BH-4 SS3 (1.5-2.1M)	BH-4 SS3D (1.5-2.1M)	
				C1F3550 / PTI254	C1F3550 / PTI263	Dun C1F3550 / PTI263	C1F3550 / PTI242	C1F3550 / PTI251	C1F3550 / PTI234	C1F3550 / PTI237	C1F3550 / PTI238	
				Jun 01, 2021	Jun 02, 2021	Jun 02, 2021	May 27, 2021	May 26, 2021	May 27, 2021	May 28, 2021	May 28, 2021	
				12:15 PM	08:40 AM	08:40 AM		, .	, .	, .		
Metals (including Hydride-Forming Metals)												
Acid Extractable Antimony (Sb)	1.3	ug/g	0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20	
Acid Extractable Arsenic (As)	18	ug/g	1.0	1.4	1.7	-	1	1.3	<1.0	1.6	1.9	
Acid Extractable Barium (Ba)	220	ug/g	0.50	42	48	-	30	29	15	46	50	
Acid Extractable Beryllium (Be)	2.5	ug/g	0.20	0.25	0.37	-	0.26	0.25	<0.20	0.36	0.4	
Acid Extractable Boron (B)	36	ug/g	5.0	5.6	5.2	-	<5.0	<5.0	<5.0	<5.0	<5.0	
Acid Extractable Cadmium (Cd)	1.2	ug/g	0.10	0.16	0.14	-	<0.10	0.17	<0.10	<0.10	0.14	
Acid Extractable Chromium (Cr)	70	ug/g	1.0	10	17	-	9.8	10	7.5	16	19	
Acid Extractable Cobalt (Co)	21	ug/g	0.10	3.2	4.6	-	3.1	2.9	2.4	4.1	4.8	
Acid Extractable Copper (Cu)	92	ug/g	0.50	9	9	-	5.7	4.3	3.5	7.7	9.1	
Acid Extractable Lead (Pb)	120	ug/g	1.0	21	7.8	-	4.8	6.2	2.2	7.7	8	
Acid Extractable Molybdenum (Mo)	2	ug/g	0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50	
Acid Extractable Nickel (Ni)	82	ug/g	0.50	6.3	9.2	-	6	5.5	4.7	7.9	9.6	
Acid Extractable Selenium (Se)	1.5	ug/g	0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50	
Acid Extractable Silver (Ag)	0.5	ug/g	0.20	<0.20	<0.20	=	<0.20	<0.20	<0.20	<0.20	<0.20	
Acid Extractable Thallium (TI)	1	ug/g	0.050	0.062	0.089	-	0.055	0.055	<0.050	0.075	0.086	
Acid Extractable Uranium (U)	2.5	ug/g	0.050	0.37	0.49	-	0.42	0.41	0.42	0.46	0.52	
Acid Extractable Vanadium (V)	86	ug/g	5.0	19	25	-	20	21	17	24	26	
Acid Extractable Zinc (Zn)	290	ug/g	5.0	40	31	-	15	24	9.9	30	35	
Other Regulated Parameters												
Hot Water Extractable Boron		ug/g	0.050	0.92	0.51	-	0.056	0.44	<0.050	0.51	0.52	
Soluble (20:1) Chloride (Cl-)		ug/g		-	-	-	-	-	-	-	-	
WAD Cyanide (Free)	0.051	ug/g	0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	
Electrical Conductivity	0.57	mS/cm	0.002	0.25	0.24	-	0.12	0.26	0.12	0.28	0.29	
Hexavalent Chromium (CrVI)	0.66	ug/g	0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	
Acid Extractable Mercury (Hg)	0.27	ug/g	0.050	0.061	<0.050	-	<0.050	<0.050	<0.050	<0.050	0.051	
Available (CaCl2) pH		pН		7.64	7.08	-	7.67	7.21	7.79	7.27	7.31	
Sodium Adsorption Ratio	2.4	N/A		0.21	0.26	-	0.3	0.21	0.31	0.29	0.29	
Fraction of Organic Carbon		g/g		-	=	-	=	=	-	=	-	
Fraction of Organic Carbon (rep.#1)		g/g		-	-	-	-	-	-	-	-	
Fraction of Organic Carbon (rep.#2)		g/g		-	-	-	-	-	-	-	-	
Average FOC Result		g/g		-	-	=	=	-	-	-	-	

Legend	
To Be Announced	TBA
Exceeds one Criteria	Result
DL > Criteria	Result
Criteria 1	Reg153/04 T1-Soil/Res

Table C4 - Metals and Inorganics in Soil

				Sam	ole ID		
	MECP Table 1			BV Labs Job ID / Sample ID			
	RPIICC			Sample Col	lection Date		
				Sample Collection Time			
Parameter	Criteria 1	Units	RDL	BH-4 SS3D (1.5-2.1IVI) Lab- Dun	BH-7 SS5 (3.1-3.7)		
				C1F3550 / PTI238	C1F3550 / PTI240		
				May 28, 2021	May 28, 2021		
Metals (including Hydride-Forming Metals)							
Acid Extractable Antimony (Sb)	1.3	ug/g	0.20	<0.20	<0.20		
Acid Extractable Arsenic (As)	18	ug/g	1.0	1.8	3		
Acid Extractable Barium (Ba)	220	ug/g	0.50	50	90		
Acid Extractable Beryllium (Be)	2.5	ug/g	0.20	0.38	0.64		
Acid Extractable Boron (B)	36	ug/g	5.0	<5.0	8.3		
Acid Extractable Cadmium (Cd)	1.2	ug/g	0.10	0.14	0.28		
Acid Extractable Chromium (Cr)	70	ug/g	1.0	18	21		
Acid Extractable Cobalt (Co)	21	ug/g	0.10	4.9	7.2		
Acid Extractable Copper (Cu)	92	ug/g	0.50	8.8	16		
Acid Extractable Lead (Pb)	120	ug/g	1.0	7.8	54		
Acid Extractable Molybdenum (Mo)	2	ug/g	0.50	<0.50	<0.50		
Acid Extractable Nickel (Ni)	82	ug/g	0.50	9.7	15		
Acid Extractable Selenium (Se)	1.5	ug/g	0.50	<0.50	<0.50		
Acid Extractable Silver (Ag)	0.5	ug/g	0.20	<0.20	<0.20		
Acid Extractable Thallium (TI)	1	ug/g	0.050	0.085	0.13		
Acid Extractable Uranium (U)	2.5	ug/g	0.050	0.5	0.5		
Acid Extractable Vanadium (V)	86	ug/g	5.0	27	32		
Acid Extractable Zinc (Zn)	290	ug/g	5.0	35	68		
Other Regulated Parameters							
Hot Water Extractable Boron		ug/g	0.050	-	0.82		
Soluble (20:1) Chloride (Cl-)		ug/g		-	-		
WAD Cyanide (Free)	0.051	ug/g	0.01	-	<0.01		
Electrical Conductivity	0.57	mS/cm	0.002	-	0.27		
Hexavalent Chromium (CrVI)	0.66	ug/g	0.18	-	<0.18		
Acid Extractable Mercury (Hg)	0.27	ug/g	0.050	<0.050	0.13		
Available (CaCl2) pH		pН		-	7.2		
Sodium Adsorption Ratio	2.4	N/A		-	0.5		
Fraction of Organic Carbon		g/g		-	-		
Fraction of Organic Carbon (rep.#1)		g/g		-	-		
Fraction of Organic Carbon (rep.#2)		g/g		-	-		
Average FOC Result		g/g		-	-		

Legend	
To Be Announced	TBA
Exceeds one Criteria	Result
DL > Criteria	Result
Criteria 1	Reg153/04 T1-Soil/Res

ICPMS

	I				Came	ala ID			
	MECP Table 1			Sample ID BV Labs Job ID / Sample ID					
	RPIICC		ŀ	Sample Collection Date					
0		11-14-		Sample Collection Time TRIP PLANK LOTH 2000 MW 1020 M					
Parameter	Criteria 1	Units	RDL	TRIP BLANK LOT#3699	MW-102	MW-102D	MW-102D Lab-Dup		
				C1F6446 / PTX975	C1F6446 / PTX971	C1F6446 / PTX972	C1F6446 / PTX972		
				Jun 08, 2021	Jun 08, 2021	Jun 08, 2021	Jun 08, 2021		
					09:23 AM	09:23 AM	09:23 AM		
Petroleum Hydrocarbons (PHCs)									
F1 (C6-C10)	420	ug/L	25	-	53	46	38		
F1 (C6-C10) - BTEX	420	ug/L	25	≘	49	43	35		
F2 (C10-C16)	150	ug/L	100	-	<100	<100	<100		
F3 (C16-C34)	500	ug/L	200	-	<200	<200	<200		
F4 (C34-C50)	500	ug/L	200	=	<200	<200	<200		
Reached Baseline at C50		ug/L		≘	YES	YES	YES		
F4G (Gravimetric)		ug/L		≘	≘	=	E		
Volatile Organic Compounds (VOCs)									
Benzene	0.5	ug/L	0.20	<0.20	<0.20	<0.20	<0.20		
Toluene	0.8	ug/L	0.20	<0.20	0.42	0.4	0.33		
Ethylbenzene	0.5	ug/L	0.20	<0.20	0.39	0.39	0.34		
m+p-Xylene		ug/L	0.20 - 0.40	<0.20	0.56	0.53	0.47		
o-Xylene		ug/L	0.20	<0.20	2.9	2.6	2.3		
Xylenes, Total	72	ug/L	0.20 - 0.40	<0.20	3.5	3.2	2.8		
Acetone	2700	ug/L	10	<10	15	13	13		
Bromodichloromethane	2	ug/L	0.50	<0.50	<0.50	<0.50	<0.50		
Bromoform	5	ug/L	1.0	<1.0	<1.0	<1.0	<1.0		
Bromomethane	0.89	ug/L	0.50	<0.50	<0.50	<0.50	<0.50		
Carbon Tetrachloride	0.2	ug/L	0.19 - 0.20	<0.19	<0.20	<0.20	<0.20		
Chlorobenzene	0.5	ug/L	0.20	<0.20	<0.20	<0.20	<0.20		
Chloroform	2	ug/L	0.20	<0.20	<0.20	<0.20	<0.20		
Dibromochloromethane	2	ug/L	0.50	<0.50	<0.50	<0.50	<0.50		
1,2-Dichlorobenzene	0.5	ug/L	0.40 - 0.50	<0.40	<0.50	<0.50	<0.50		
1,3-Dichlorobenzene	0.5	ug/L	0.40 - 0.50	<0.40	<0.50	<0.50	<0.50		
1,4-Dichlorobenzene	0.5	ug/L	0.40 - 0.50	<0.40	<0.50	<0.50	<0.50		
Dichlorodifluoromethane	590		1.0	<1.0	<1.0	<1.0	<1.0		
	0.5	ug/L	0.20	<0.20	<0.20	<0.20	<0.20		
1,1-Dichloroethane 1,2-Dichloroethane	0.5	ug/L	0.20	<0.49	<0.50	<0.50	<0.50		
		ug/L							
1,1-Dichloroethylene	0.5	ug/L	0.20	<0.20	<0.20	<0.20	<0.20		
cis-1,2-Dichloroethylene	1.6	ug/L	0.50	<0.50	<0.50	<0.50	<0.50		
trans-1,2-Dichloroethylene	1.6	ug/L	0.50	<0.50	<0.50	<0.50	<0.50		
1,2-Dichloropropane	0.5	ug/L	0.20	<0.20	<0.20	<0.20	<0.20		
cis-1,3-Dichloropropene	0.5	ug/L	0.30	<0.30	<0.30	<0.30	<0.30		
trans-1,3-Dichloropropene	0.5	ug/L	0.40	<0.40	<0.40	<0.40	<0.40		
1,3-Dichloropropene (cis+trans)	0.5	ug/L	0.50	<0.50	<0.50	<0.50	-0.20		
Ethylene Dibromide	0.2	ug/L	0.19 - 0.20	<0.19	<0.20	<0.20	<0.20		
Hexane	5	ug/L	1.0	<1.0	<1.0	<1.0	<1.0		
Methyl Ethyl Ketone (MEK)	400	ug/L	10	<10	<10	<10	<10		
Methyl Isobutyl Ketone (MIBK)	640	ug/L	5.0	<5.0	<5.0	<5.0	<5.0		
Methyl tert-butyl ether (MTBE)	15	ug/L	0.50	<0.50	<0.50	<0.50	<0.50		
Methylene Chloride (Dichloromethane)	5	ug/L	2.0	<2.0	<2.0	<2.0	<2.0		
Styrene	0.5	ug/L	0.40 - 0.50	<0.40	<0.50	<0.50	<0.50		
1,1,1,2-Tetrachloroethane	1.1	ug/L	0.50	<0.50	<0.50	<0.50	<0.50		
1,1,2,2-Tetrachloroethane	0.5	ug/L	0.40 - 0.50	<0.40	<0.50	<0.50	<0.50		
Tetrachloroethylene	0.5	ug/L	0.20	<0.20	<0.20	<0.20	<0.20		
1,1,1-Trichloroethane	0.5	ug/L	0.20	<0.20	<0.20	<0.20	<0.20		
1,1,2-Trichloroethane	0.5	ug/L	0.40 - 0.50	<0.40	<0.50	<0.50	<0.50		
Trichloroethylene	0.5	ug/L	0.20	<0.20	<0.20	<0.20	<0.20		
Trichlorofluoromethane	150	ug/L	0.50	<0.50	<0.50	<0.50	<0.50		
Vinyl Chloride	0.5	ug/L	0.20	<0.20	<0.20	<0.20	<0.20		
1,4-Dioxane									
1,4-Dioxane		ug/L		Ξ	9	ē	=		
	_	_	_						

_	
Legend	
To Be Announced	TBA
Exceeds one Criteria	Result
DL > Criteria	Result
Criteria 1	Reg153/04 T1-GW

				County ID		
				Sample ID		
	MECP Table 1			BV Labs Job ID / Sample ID Sample Collection Date		
	RPIICC	Units				
Parameter				Sample Collection Time		
	Criteria 1		RDL	MW-103	MW-106	
				C1F6446 / PTX973	C1F6446 / PTX974	
				Jun 08, 2021	Jun 08, 2021	
				09:35 AM	10:05 AM	
Petroleum Hydrocarbons (PHCs)						
F1 (C6-C10)	420	ug/L	25	<25	<25	
F1 (C6-C10) - BTEX	420	ug/L	25	<25	<25	
F2 (C10-C16)	150	ug/L	100	<100	<100	
F3 (C16-C34)	500	ug/L	200	<200	<200	
F4 (C34-C50)	500	ug/L	200	<200	<200	
Reached Baseline at C50		ug/L		YES	YES	
F4G (Gravimetric)		ug/L		-	-	
Volatile Organic Compounds (VOCs)		40				
Benzene	0.5	ug/L	0.20	<0.20	<0.20	
Toluene	0.8	ug/L	0.20	<0.20	<0.20	
Ethylbenzene	0.5	ug/L	0.20	<0.20	<0.20	
m+p-Xylene	1	ug/L	0.20 - 0.40	<0.40	<0.40	
o-Xylene		ug/L	0.20	<0.20	<0.20	
Xylenes, Total	72	ug/L	0.20 - 0.40	<0.40	<0.40	
Acetone	2700	ug/L	10	-	-	
Bromodichloromethane	2	ug/L	0.50	=	-	
Bromoform	5	ug/L	1.0	-	-	
Bromomethane	0.89	ug/L	0.50	=	=	
Carbon Tetrachloride	0.2	ug/L	0.19 - 0.20	=	-	
Chlorobenzene	0.5	ug/L	0.20	=	-	
Chloroform	2	ug/L	0.20	-	=	
Dibromochloromethane	2	ug/L	0.50	-	-	
1,2-Dichlorobenzene	0.5	ug/L	0.40 - 0.50	-	-	
1,3-Dichlorobenzene	0.5	ug/L	0.40 - 0.50	-	-	
1,4-Dichlorobenzene	0.5	ug/L	0.40 - 0.50	=	=	
Dichlorodifluoromethane	590	ug/L	1.0	=	=	
1,1-Dichloroethane	0.5	ug/L	0.20	-	-	
1,2-Dichloroethane	0.5	ug/L	0.49 - 0.50	-	-	
1,1-Dichloroethylene	0.5	ug/L	0.20	=	=	
cis-1,2-Dichloroethylene	1.6	ug/L	0.50	-	-	
trans-1,2-Dichloroethylene	1.6	ug/L	0.50	-	-	
1,2-Dichloropropane	0.5	ug/L	0.20	-	-	
cis-1,3-Dichloropropene	0.5	ug/L	0.30	-	-	
trans-1,3-Dichloropropene	0.5	ug/L	0.40	=	=	
1,3-Dichloropropene (cis+trans)	0.5	ug/L	0.50	-	-	
Ethylene Dibromide	0.2	ug/L	0.19 - 0.20	-	-	
Hexane	5	ug/L	1.0	-	-	
Methyl Ethyl Ketone (MEK)	400	ug/L	10	-	-	
Methyl Isobutyl Ketone (MIBK)	640	ug/L	5.0			
Methyl tert-butyl ether (MTBE)	15	ug/L	0.50	-	-	
Methylene Chloride (Dichloromethane)	5	ug/L	2.0	-	-	
Styrene	0.5	ug/L	0.40 - 0.50	-		
1,1,1,2-Tetrachloroethane	1.1	ug/L	0.50	-	-	
1,1,2,2-Tetrachloroethane	0.5	ug/L	0.40 - 0.50	-		
Tetrachloroethylene	0.5	ug/L	0.20	-	-	
1,1,1-Trichloroethane	0.5	ug/L	0.20 0.40 - 0.50			
1,1,2-Trichloroethane	0.5	ug/L		-	-	
Trichloroethylene Trichlorofluoromethane	0.5 150	ug/L	0.20	-	-	
		ug/L	0.50	-	-	
Vinyl Chloride 1,4-Dioxane	0.5	ug/L	0.20	-	-	
		uc/i				
1,4-Dioxane]	ug/L	l		-	

Legend	
To Be Announced	TBA
Exceeds one Criteria	Result
DL > Criteria	Result
Criteria 1	Reg153/04 T1-GW

Phase II Environmental Site Assessment 15374 and 15450 Woodbine Avenue, Gormley, Ontario Project Number: BRM-21010864-B0 June 17, 2021

Appendix D – Certificates of Analysis

Your P.O. #: MRK-GEO

Your Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Attention: Aleksandar Saric

exp Services Inc Markham Branch 220 Commerce Valley Dr W Suite 500 Markham, ON CANADA L3T 0A8

Your C.O.C. #: 792128-83-01, 792128-121-01, 792128-163-01

Report Date: 2021/06/11 Report #: R6672190

Version: 2 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1F3550 Received: 2021/06/04, 15:30

Sample Matrix: Soil # Samples Received: 28

		Date	Date		Analytical Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	
Hot Water Extractable Boron	8	2021/06/08	2021/06/08	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	4	N/A	2021/06/11		EPA 8260C m
Free (WAD) Cyanide	8	2021/06/08	2021/06/08	CAM SOP-00457	OMOE E3015 m
Conductivity	8	2021/06/09	2021/06/09	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	8	2021/06/08	2021/06/09	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	7	N/A	2021/06/08	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	11	2021/06/07	2021/06/08	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS	1	2021/06/08	2021/06/08	CAM SOP-00447	EPA 6020B m
Acid Extractable Metals by ICPMS	7	2021/06/08	2021/06/09	CAM SOP-00447	EPA 6020B m
Moisture	28	N/A	2021/06/07	CAM SOP-00445	Carter 2nd ed 51.2 m
OC Pesticides (Selected) & PCB (4)	6	2021/06/08	2021/06/09	CAM SOP-00307	SW846 8081, 8082
OC Pesticides Summed Parameters	6	N/A	2021/06/08	CAM SOP-00307	EPA 8081/8082 m
Polychlorinated Biphenyl in Soil	3	2021/06/07	2021/06/08	CAM SOP-00309	EPA 8082A m
pH CaCl2 EXTRACT	8	2021/06/09	2021/06/09	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	8	N/A	2021/06/10	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs	4	N/A	2021/06/11	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Your P.O. #: MRK-GEO

Your Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Attention: Aleksandar Saric

exp Services Inc Markham Branch 220 Commerce Valley Dr W Suite 500 Markham, ON CANADA L3T 0A8

Your C.O.C. #: 792128-83-01, 792128-121-01, 792128-163-01

Report Date: 2021/06/11 Report #: R6672190

Version: 2 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1F3550 Received: 2021/06/04, 15:30

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.
- (2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
- (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.
- (4) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Patricia Legette, Project Manager

Email: Patricia.Legette@bureauveritas.com

Phone# (905)817-5799

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (SOIL)

BV Labs ID		PTI234	PTI237		PTI238		
Sampling Date		2021/05/27	2021/05/28		2021/05/28		
COC Number		792128-83-01	792128-83-01		792128-83-01		
	UNITS	BH-3 SS3 (1.5-2.1M)	BH-4 SS3 (1.5-2.1M)	QC Batch	BH-4 SS3D (1.5-2.1M)	RDL	QC Batch
Calculated Parameters							
Sodium Adsorption Ratio	N/A	0.31 (1)	0.29	7391452	0.29		7391452
Inorganics						•	
Conductivity	mS/cm	0.12	0.28	7397185	0.29	0.002	7397185
Moisture	%	12	14	7393235	14	1.0	7393235
Available (CaCl2) pH	рН	7.79	7.27	7397483	7.31		7397483
WAD Cyanide (Free)	ug/g	<0.01	<0.01	7394587	<0.01	0.01	7394587
Chromium (VI)	ug/g	<0.18	<0.18	7395470	<0.18	0.18	7394948
Metals						•	
Hot Water Ext. Boron (B)	ug/g	<0.050	0.51	7395236	0.52	0.050	7395236
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	7395393	<0.20	0.20	7395627
Acid Extractable Arsenic (As)	ug/g	<1.0	1.6	7395393	1.9	1.0	7395627
Acid Extractable Barium (Ba)	ug/g	15	46	7395393	50	0.50	7395627
Acid Extractable Beryllium (Be)	ug/g	<0.20	0.36	7395393	0.40	0.20	7395627
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	7395393	<5.0	5.0	7395627
Acid Extractable Cadmium (Cd)	ug/g	<0.10	<0.10	7395393	0.14	0.10	7395627
Acid Extractable Chromium (Cr)	ug/g	7.5	16	7395393	19	1.0	7395627
Acid Extractable Cobalt (Co)	ug/g	2.4	4.1	7395393	4.8	0.10	7395627
Acid Extractable Copper (Cu)	ug/g	3.5	7.7	7395393	9.1	0.50	7395627
Acid Extractable Lead (Pb)	ug/g	2.2	7.7	7395393	8.0	1.0	7395627
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	<0.50	7395393	<0.50	0.50	7395627
Acid Extractable Nickel (Ni)	ug/g	4.7	7.9	7395393	9.6	0.50	7395627
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	7395393	<0.50	0.50	7395627
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	7395393	<0.20	0.20	7395627
Acid Extractable Thallium (TI)	ug/g	<0.050	0.075	7395393	0.086	0.050	7395627
Acid Extractable Uranium (U)	ug/g	0.42	0.46	7395393	0.52	0.050	7395627
Acid Extractable Vanadium (V)	ug/g	17	24	7395393	26	5.0	7395627
Acid Extractable Zinc (Zn)	ug/g	9.9	30	7395393	35	5.0	7395627

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Report Date: 2021/06/11

exp Services Inc

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (SOIL)

BV Labs ID		PTI234	PTI237		PTI238		
Sampling Date		2021/05/27	2021/05/28		2021/05/28		
COC Number		792128-83-01	792128-83-01		792128-83-01		
	UNITS	BH-3 SS3 (1.5-2.1M)	BH-4 SS3 (1.5-2.1M)	QC Batch	BH-4 SS3D (1.5-2.1M)	RDL	QC Batch
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	7395393	0.051	0.050	7395627

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (SOIL)

BV Labs ID Sampling Date COC Number		PTI238 2021/05/28			PTI240		
· ·		2021/05/28					
COC Number		* *			2021/05/28		
		792128-83-01			792128-83-01		
	UNITS	BH-4 SS3D (1.5-2.1M) Lab-Dup	RDL	QC Batch	BH-7 SS5 (3.1-3.7)	RDL	QC Batch
Calculated Parameters				<u> </u>			
Sodium Adsorption Ratio	N/A				0.50		7391452
Inorganics			•				
Conductivity	mS/cm				0.27	0.002	7397185
Moisture	%				17	1.0	7393235
Available (CaCl2) pH	рН				7.20		7397483
WAD Cyanide (Free)	ug/g				<0.01	0.01	7394587
Chromium (VI)	ug/g				<0.18	0.18	7395470
Metals			•				
Hot Water Ext. Boron (B)	ug/g				0.82	0.050	7395236
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	7395627	<0.20	0.20	7395393
Acid Extractable Arsenic (As)	ug/g	1.8	1.0	7395627	3.0	1.0	7395393
Acid Extractable Barium (Ba)	ug/g	50	0.50	7395627	90	0.50	7395393
Acid Extractable Beryllium (Be)	ug/g	0.38	0.20	7395627	0.64	0.20	7395393
Acid Extractable Boron (B)	ug/g	<5.0	5.0	7395627	8.3	5.0	7395393
Acid Extractable Cadmium (Cd)	ug/g	0.14	0.10	7395627	0.28	0.10	7395393
Acid Extractable Chromium (Cr)	ug/g	18	1.0	7395627	21	1.0	7395393
Acid Extractable Cobalt (Co)	ug/g	4.9	0.10	7395627	7.2	0.10	7395393
Acid Extractable Copper (Cu)	ug/g	8.8	0.50	7395627	16	0.50	7395393
Acid Extractable Lead (Pb)	ug/g	7.8	1.0	7395627	54	1.0	7395393
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	7395627	<0.50	0.50	7395393
Acid Extractable Nickel (Ni)	ug/g	9.7	0.50	7395627	15	0.50	7395393
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	7395627	<0.50	0.50	7395393
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	7395627	<0.20	0.20	7395393
Acid Extractable Thallium (Tl)	ug/g	0.085	0.050	7395627	0.13	0.050	7395393
Acid Extractable Uranium (U)	ug/g	0.50	0.050	7395627	0.50	0.050	7395393
Acid Extractable Vanadium (V)	ug/g	27	5.0	7395627	32	5.0	7395393
Acid Extractable Zinc (Zn)	ug/g	35	5.0	7395627	68	5.0	7395393
Acid Extractable Mercury (Hg)	ug/g	<0.050	0.050	7395627	0.13	0.050	7395393

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (SOIL)

BV Labs ID		PTI242	PTI251		PTI254		
Sampling Date		2021/05/27	2021/05/26		2021/06/01 12:15		
COC Number		792128-83-01	792128-121-01		792128-121-01		
	UNITS	BH-12 SS3 (1.5-2.1M)	BH-14 SS3 (1.5-2.1M)	QC Batch	BH-101 SS1 (0.0-0.6M)	RDL	QC Batch
Calculated Parameters							
Sodium Adsorption Ratio	N/A	0.30 (1)	0.21 (1)	7391452	0.21 (1)		7391452
Inorganics	•			-			
Conductivity	mS/cm	0.12	0.26	7397185	0.25	0.002	7397185
Moisture	%	13	18	7393235	13	1.0	7393235
Available (CaCl2) pH	рН	7.67	7.21	7397483	7.64		7397483
WAD Cyanide (Free)	ug/g	<0.01	<0.01	7394587	<0.01	0.01	7394587
Chromium (VI)	ug/g	<0.18	<0.18	7394948	<0.18	0.18	7395470
Metals	•			-			
Hot Water Ext. Boron (B)	ug/g	0.056	0.44	7395236	0.92	0.050	7395236
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	7395393	<0.20	0.20	7395393
Acid Extractable Arsenic (As)	ug/g	1.0	1.3	7395393	1.4	1.0	7395393
Acid Extractable Barium (Ba)	ug/g	30	29	7395393	42	0.50	7395393
Acid Extractable Beryllium (Be)	ug/g	0.26	0.25	7395393	0.25	0.20	7395393
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	7395393	5.6	5.0	7395393
Acid Extractable Cadmium (Cd)	ug/g	<0.10	0.17	7395393	0.16	0.10	7395393
Acid Extractable Chromium (Cr)	ug/g	9.8	10	7395393	10	1.0	7395393
Acid Extractable Cobalt (Co)	ug/g	3.1	2.9	7395393	3.2	0.10	7395393
Acid Extractable Copper (Cu)	ug/g	5.7	4.3	7395393	9.0	0.50	7395393
Acid Extractable Lead (Pb)	ug/g	4.8	6.2	7395393	21	1.0	7395393
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	<0.50	7395393	<0.50	0.50	7395393
Acid Extractable Nickel (Ni)	ug/g	6.0	5.5	7395393	6.3	0.50	7395393
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	7395393	<0.50	0.50	7395393
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	7395393	<0.20	0.20	7395393
Acid Extractable Thallium (TI)	ug/g	0.055	0.055	7395393	0.062	0.050	7395393
Acid Extractable Uranium (U)	ug/g	0.42	0.41	7395393	0.37	0.050	7395393
Acid Extractable Vanadium (V)	ug/g	20	21	7395393	19	5.0	7395393
Acid Extractable Zinc (Zn)	ug/g	15	24	7395393	40	5.0	7395393

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (SOIL)

BV Labs ID		PTI242	PTI251		PTI254		
Sampling Date		2021/05/27	2021/05/26		2021/06/01 12:15		
COC Number		792128-83-01	792128-121-01		792128-121-01		
	UNITS	BH-12 SS3 (1.5-2.1M)	BH-14 SS3 (1.5-2.1M)	QC Batch	BH-101 SS1 (0.0-0.6M)	RDL	QC Batch
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	7395393	0.061	0.050	7395393

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (SOIL)

BV Labs ID		PTI263			PTI263		
Sampling Date		2021/06/02 08:40			2021/06/02 08:40		
COC Number		792128-163-01			792128-163-01		
	UNITS	BH-105 SS2 (0.8-1.4M)	RDL	QC Batch	BH-105 SS2 (0.8-1.4M) Lab-Dup	RDL	QC Batch
Calculated Parameters							
Sodium Adsorption Ratio	N/A	0.26		7391452			
Inorganics	1					I	
Conductivity	mS/cm	0.24	0.002	7397185			
Moisture	%	17	1.0	7393235			
Available (CaCl2) pH	рН	7.08		7397483			
WAD Cyanide (Free)	ug/g	<0.01	0.01	7394587			
Chromium (VI)	ug/g	<0.18	0.18	7395470	<0.18	0.18	7395470
Metals			•			•	
Hot Water Ext. Boron (B)	ug/g	0.51	0.050	7395236			
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	7395393			
Acid Extractable Arsenic (As)	ug/g	1.7	1.0	7395393			
Acid Extractable Barium (Ba)	ug/g	48	0.50	7395393			
Acid Extractable Beryllium (Be)	ug/g	0.37	0.20	7395393			
Acid Extractable Boron (B)	ug/g	5.2	5.0	7395393			
Acid Extractable Cadmium (Cd)	ug/g	0.14	0.10	7395393			
Acid Extractable Chromium (Cr)	ug/g	17	1.0	7395393			
Acid Extractable Cobalt (Co)	ug/g	4.6	0.10	7395393			
Acid Extractable Copper (Cu)	ug/g	9.0	0.50	7395393			
Acid Extractable Lead (Pb)	ug/g	7.8	1.0	7395393			
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	7395393			
Acid Extractable Nickel (Ni)	ug/g	9.2	0.50	7395393			
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	7395393			
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	7395393			
Acid Extractable Thallium (TI)	ug/g	0.089	0.050	7395393			
Acid Extractable Uranium (U)	ug/g	0.49	0.050	7395393			
Acid Extractable Vanadium (V)	ug/g	25	5.0	7395393			
Acid Extractable Zinc (Zn)	ug/g	31	5.0	7395393			
Acid Extractable Mercury (Hg)	ug/g	<0.050	0.050	7395393			
RDL = Reportable Detection Limit	•		•			•	

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 OC PESTICIDES (SOIL)

BV Labs ID		PTI235	PTI236	PTI239	PTI241		
Sampling Date		2021/05/28	2021/05/28	2021/05/28	2021/05/27		
COC Number		792128-83-01	792128-83-01	792128-83-01	792128-83-01		
	UNITS	BH-4 SS1 (0.0-0.6M)	BH-4 SS1D (0.0-0.6M)	BH-7 SS1 (0.0-0.6M)	BH-12 SS2 (0.8-1.4M)	RDL	QC Batch
Inorganics				<u>.</u>	•		<u> </u>
Moisture	%	21	21	16	9.5	1.0	7393020
Calculated Parameters							
Chlordane (Total)	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7391451
o,p-DDD + p,p-DDD	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7391451
o,p-DDE + p,p-DDE	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7391451
o,p-DDT + p,p-DDT	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7391451
Total Endosulfan	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7391451
Total PCB	ug/g	<0.015	<0.015	<0.015	<0.015	0.015	7391451
Pesticides & Herbicides	*			-			
Aldrin	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
a-Chlordane	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
g-Chlordane	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
o,p-DDD	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
p,p-DDD	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
o,p-DDE	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
p,p-DDE	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
o,p-DDT	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
p,p-DDT	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
Dieldrin	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
Lindane	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
Endosulfan I (alpha)	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
Endosulfan II (beta)	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
Endrin	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
Heptachlor	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
Heptachlor epoxide	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
Hexachlorobenzene	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
Hexachlorobutadiene	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
Hexachloroethane	ug/g	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7395123
Methoxychlor	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	7395123
RDL = Reportable Detection	n Limit				-		

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 OC PESTICIDES (SOIL)

BV Labs ID		PTI235	PTI236	PTI239	PTI241		
Sampling Date		2021/05/28	2021/05/28	2021/05/28	2021/05/27		
COC Number		792128-83-01	792128-83-01	792128-83-01	792128-83-01		
	UNITS	BH-4 SS1 (0.0-0.6M)	BH-4 SS1D (0.0-0.6M)	BH-7 SS1 (0.0-0.6M)	BH-12 SS2 (0.8-1.4M)	RDL	QC Batch
Aroclor 1242	ug/g	<0.015	<0.015	<0.015	<0.015	0.015	7395123
Aroclor 1248	ug/g	<0.015	<0.015	<0.015	<0.015	0.015	7395123
Aroclor 1254	ug/g	<0.015	<0.015	<0.015	<0.015	0.015	7395123
Aroclor 1260	ug/g	<0.015	<0.015	<0.015	<0.015	0.015	7395123
Surrogate Recovery (%)						•	
2,4,5,6-Tetrachloro-m-xylene	%	82	98	93	84		7395123
Decachlorobiphenyl	%	86	120	93	82		7395123

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 OC PESTICIDES (SOIL)

BV Labs ID		PTI243	PTI262		
Sampling Date		2021/05/26	2021/06/02 08:30		
COC Number		792128-83-01	792128-163-01		
	UNITS	BH-14 SS2 (0.8-1.4M)	BH-105 SS1 (0.0-0.6M)	RDL	QC Batch
Inorganics					
Moisture	%	16	12	1.0	7393020
Calculated Parameters				•	
Chlordane (Total)	ug/g	<0.0020	<0.0020	0.0020	7391451
o,p-DDD + p,p-DDD	ug/g	<0.0020	<0.0020	0.0020	7391451
o,p-DDE + p,p-DDE	ug/g	<0.0020	<0.0020	0.0020	7391451
o,p-DDT + p,p-DDT	ug/g	<0.0020	<0.0020	0.0020	7391451
Total Endosulfan	ug/g	<0.0020	<0.0020	0.0020	7391451
Total PCB	ug/g	<0.015	<0.015	0.015	7391451
Pesticides & Herbicides	•			•	
Aldrin	ug/g	<0.0020	<0.0020	0.0020	7395123
a-Chlordane	ug/g	<0.0020	<0.0020	0.0020	7395123
g-Chlordane	ug/g	<0.0020	<0.0020	0.0020	7395123
o,p-DDD	ug/g	<0.0020	<0.0020	0.0020	7395123
p,p-DDD	ug/g	<0.0020	<0.0020	0.0020	7395123
o,p-DDE	ug/g	<0.0020	<0.0020	0.0020	7395123
p,p-DDE	ug/g	<0.0020	<0.0020	0.0020	7395123
o,p-DDT	ug/g	<0.0020	<0.0020	0.0020	7395123
p,p-DDT	ug/g	<0.0020	<0.0020	0.0020	7395123
Dieldrin	ug/g	<0.0020	<0.0020	0.0020	7395123
Lindane	ug/g	<0.0020	<0.0020	0.0020	7395123
Endosulfan I (alpha)	ug/g	<0.0020	<0.0020	0.0020	7395123
Endosulfan II (beta)	ug/g	<0.0020	<0.0020	0.0020	7395123
Endrin	ug/g	<0.0020	<0.0020	0.0020	7395123
Heptachlor	ug/g	<0.0020	<0.0020	0.0020	7395123
Heptachlor epoxide	ug/g	<0.0020	<0.0020	0.0020	7395123
Hexachlorobenzene	ug/g	<0.0020	<0.0020	0.0020	7395123
Hexachlorobutadiene	ug/g	<0.0020	<0.0020	0.0020	7395123
Hexachloroethane	ug/g	<0.0020	<0.0020	0.0020	7395123
Methoxychlor	ug/g	<0.0050	<0.0050	0.0050	7395123

Report Date: 2021/06/11

exp Services Inc

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 OC PESTICIDES (SOIL)

BV Labs ID		PTI243	PTI262		
Sampling Date		2021/05/26	2021/06/02 08:30		
COC Number		792128-83-01	792128-163-01		
	UNITS	BH-14 SS2 (0.8-1.4M)	BH-105 SS1 (0.0-0.6M)	RDL	QC Batch
Aroclor 1242	ug/g	<0.015	<0.015	0.015	7395123
Aroclor 1248	ug/g	<0.015	<0.015	0.015	7395123
Aroclor 1254	ug/g	<0.015	<0.015	0.015	7395123
Aroclor 1260	ug/g	<0.015	<0.015	0.015	7395123
Surrogate Recovery (%)					
2,4,5,6-Tetrachloro-m-xylene	%	76	77		7395123
Decachlorobiphenyl	%	87	93		7395123
RDL = Reportable Detection Li QC Batch = Quality Control Bat				•	•

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 PCBS (SOIL)

İ		PTI252	PTI265	PTI266		
Sampling Date		2021/05/31	2021/06/02 14:45	2021/06/02 14:45		
COC Number		792128-121-01	792128-163-01	792128-163-01		
	UNITS	BH-16 SS2 (0.8-1.4M)	BH-107 SS2 (0.8-1.4M)	BH-107 SS2D (0.8-1.4M)	RDL	QC Batch
Inorganics						
Moisture	%	16	16	17	1.0	7393020
PCBs					•	•
Aroclor 1242	ug/g	<0.010	<0.010	<0.010	0.010	7394457
Aroclor 1248	ug/g	<0.010	<0.010	<0.010	0.010	7394457
Aroclor 1254	ug/g	<0.010	<0.010	<0.010	0.010	7394457
Aroclor 1260	ug/g	<0.010	<0.010	<0.010	0.010	7394457
Total PCB	ug/g	<0.010	<0.010	<0.010	0.010	7394457
Surrogate Recovery (%)					•	•
Decachlorobiphenyl	%	93	92	92		7394457

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		PTI253	PTI255	PTI260	PTI261		
Sampling Date		2021/05/31	2021/06/01	2021/06/01	2021/06/02		
		2021/03/31	12:40	14:00	14:20		
COC Number		792128-121-01	792128-121-01	792128-121-01	792128-163-01		
	UNITS	BH-16 SS3	BH-101 SS4	BH-103 SS6	BH-104 SS4	RDL	QC Batch
	ONITS	(1.5-2.1M)	(2.3-2.7M)	(3.8-4.4M)	(2.3-2.7M)	NDL	QC Dateil
Inorganics							
Moisture	%	19	17	16	15	1.0	7393235
BTEX & F1 Hydrocarbons							
Benzene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	7393649
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	7393649
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	7393649
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	7393649
p+m-Xylene	ug/g	<0.040	<0.040	<0.040	<0.040	0.040	7393649
Total Xylenes	ug/g	<0.040	<0.040	<0.040	<0.040	0.040	7393649
F1 (C6-C10)	ug/g	<10	<10	<10	<10	10	7393649
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	10	7393649
F2-F4 Hydrocarbons	•		•	•	•	•	*
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	10	7393224
F3 (C16-C34 Hydrocarbons)	ug/g	54	<50	<50	<50	50	7393224
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	<50	50	7393224
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		7393224
Surrogate Recovery (%)							
1,4-Difluorobenzene	%	97	95	96	97		7393649
4-Bromofluorobenzene	%	99	98	95	96		7393649
D10-o-Xylene	%	107	110	103	111		7393649
D4-1,2-Dichloroethane	%	116	117	114	114		7393649
o-Terphenyl	%	88	91	85	87		7393224
RDL = Reportable Detection I	imit						

QC Batch = Quality Control Batch

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		PTI261			PTI264	PTI267		
Sampling Date		2021/06/02			2021/06/02	2021/06/02		
Sampling Date		14:20			11:20	14:55		
COC Number		792128-163-01			792128-163-01	792128-163-01		
	UNITS	BH-104 SS4 (2.3-2.7M) Lab-Dup	RDL	QC Batch	BH-106 SS4 (0.8-1.4M)	BH-107 SS3 (1.5-2.1M)	RDL	QC Batch
Inorganics								
Moisture	%	15	1.0	7393235	16	16	1.0	7393235
BTEX & F1 Hydrocarbons			•			•		
Benzene	ug/g				<0.020	<0.020	0.020	7393649
Toluene	ug/g				<0.020	<0.020	0.020	7393649
Ethylbenzene	ug/g				<0.020	<0.020	0.020	7393649
o-Xylene	ug/g				<0.020	<0.020	0.020	7393649
p+m-Xylene	ug/g				<0.040	<0.040	0.040	7393649
Total Xylenes	ug/g				<0.040	<0.040	0.040	7393649
F1 (C6-C10)	ug/g				<10	<10	10	7393649
F1 (C6-C10) - BTEX	ug/g				<10	<10	10	7393649
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g				<10	<10	10	7393224
F3 (C16-C34 Hydrocarbons)	ug/g				<50	<50	50	7393224
F4 (C34-C50 Hydrocarbons)	ug/g				<50	<50	50	7393224
Reached Baseline at C50	ug/g				Yes	Yes		7393224
Surrogate Recovery (%)								
1,4-Difluorobenzene	%				96	96		7393649
4-Bromofluorobenzene	%				96	99		7393649
D10-o-Xylene	%				95	104		7393649
D4-1,2-Dichloroethane	%				116	115		7393649
o-Terphenyl	%				87	89		7393224

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		PTI268		
Sampling Date		2021/06/02		
Sampling Date		15:15		
COC Number		792128-163-01		
	UNITS	BH-108 SS2	RDL	QC Batch
		(0.8-1.4M)		40 2000
Inorganics				
Moisture	%	16	1.0	7393235
BTEX & F1 Hydrocarbons				
Benzene	ug/g	<0.020	0.020	7393649
Toluene	ug/g	<0.020	0.020	7393649
Ethylbenzene	ug/g	<0.020	0.020	7393649
o-Xylene	ug/g	<0.020	0.020	7393649
p+m-Xylene	ug/g	<0.040	0.040	7393649
Total Xylenes	ug/g	<0.040	0.040	7393649
F1 (C6-C10)	ug/g	<10	10	7393649
F1 (C6-C10) - BTEX	ug/g	<10	10	7393649
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	7393224
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	7393224
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	7393224
Reached Baseline at C50	ug/g	Yes		7393224
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	98		7393649
4-Bromofluorobenzene	%	94		7393649
D10-o-Xylene	%	103		7393649
D4-1,2-Dichloroethane	%	114		7393649
o-Terphenyl	%	93		7393224
RDL = Reportable Detection I	imit			
QC Batch = Quality Control B				

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID		PTI256	PTI257	PTI258		
Sampling Date		2021/06/01 09:00	2021/06/01 09:00	2021/06/01 08:15		
COC Number		792128-121-01	792128-121-01	792128-121-01		
	UNITS	BH-102 SS5 (3.1-3.7M)	BH-102 SS5D (3.1-3.7M)	BH-102 SS6 (3.8-4.4M)	RDL	QC Batch
Inorganics						
Moisture	%	15	15	15	1.0	7393235
Calculated Parameters				1	•	
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	<0.050	0.050	7391450
Volatile Organics				1		
Acetone (2-Propanone)	ug/g	<0.50	<0.50	<0.50	0.50	7392157
Benzene	ug/g	<0.020	<0.020	<0.020	0.020	7392157
Bromodichloromethane	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Bromoform	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Bromomethane	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Carbon Tetrachloride	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Chlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Chloroform	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Dibromochloromethane	ug/g	<0.050	<0.050	<0.050	0.050	7392157
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	7392157
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	7392157
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	<0.050	0.050	7392157
1,1-Dichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	7392157
1,2-Dichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	7392157
1,1-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	7392157
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	7392157
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	7392157
1,2-Dichloropropane	ug/g	<0.050	<0.050	<0.050	0.050	7392157
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	0.030	7392157
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	0.040	7392157
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	0.020	7392157
Ethylene Dibromide	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Hexane	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	<0.050	0.050	7392157
RDL = Reportable Detection Limit QC Batch = Quality Control Batch						

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID		PTI256	PTI257	PTI258		
Sampling Date		2021/06/01 09:00	2021/06/01 09:00	2021/06/01 08:15		
COC Number		792128-121-01	792128-121-01	792128-121-01		
	UNITS	BH-102 SS5 (3.1-3.7M)	BH-102 SS5D (3.1-3.7M)	BH-102 SS6 (3.8-4.4M)	RDL	QC Batch
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	<0.50	0.50	7392157
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	<0.50	0.50	7392157
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Styrene	ug/g	<0.050	<0.050	<0.050	0.050	7392157
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	0.050	7392157
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Tetrachloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Toluene	ug/g	<0.020	<0.020	<0.020	0.020	7392157
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	7392157
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Trichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	<0.050	0.050	7392157
Vinyl Chloride	ug/g	<0.020	<0.020	<0.020	0.020	7392157
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	0.020	7392157
o-Xylene	ug/g	<0.020	<0.020	<0.020	0.020	7392157
Total Xylenes	ug/g	<0.020	<0.020	<0.020	0.020	7392157
F1 (C6-C10)	ug/g	<10	<10	<10	10	7392157
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	10	7392157
F2-F4 Hydrocarbons			•	•		
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	10	7393224
F3 (C16-C34 Hydrocarbons)	ug/g	51	<50	68	50	7393224
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	50	7393224
Reached Baseline at C50	ug/g	Yes	Yes	Yes		7393224
Surrogate Recovery (%)			-			!
o-Terphenyl	%	84	94	91		7393224
4-Bromofluorobenzene	%	93	92	94		7392157
D10-o-Xylene	%	82	81	80		7392157
D4-1,2-Dichloroethane	%	96	95	96		7392157
D8-Toluene	%	102	103	101		7392157
D8-Toluene RDL = Reportable Detection Limit QC Batch = Quality Control Batch	%	102	103	101		

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID		PT1259		
Sampling Date		2021/06/01 08:30		
COC Number		792128-121-01		
	UNITS	BH-102 SS7 (4.6-5.2M)	RDL	QC Batch
Inorganics				
Moisture	%	16	1.0	7393235
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	7391450
Volatile Organics			•	
Acetone (2-Propanone)	ug/g	<0.50	0.50	7392157
Benzene	ug/g	<0.020	0.020	7392157
Bromodichloromethane	ug/g	<0.050	0.050	7392157
Bromoform	ug/g	<0.050	0.050	7392157
Bromomethane	ug/g	<0.050	0.050	7392157
Carbon Tetrachloride	ug/g	<0.050	0.050	7392157
Chlorobenzene	ug/g	<0.050	0.050	7392157
Chloroform	ug/g	<0.050	0.050	7392157
Dibromochloromethane	ug/g	<0.050	0.050	7392157
1,2-Dichlorobenzene	ug/g	<0.050	0.050	7392157
1,3-Dichlorobenzene	ug/g	<0.050	0.050	7392157
1,4-Dichlorobenzene	ug/g	<0.050	0.050	7392157
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	0.050	7392157
1,1-Dichloroethane	ug/g	<0.050	0.050	7392157
1,2-Dichloroethane	ug/g	<0.050	0.050	7392157
1,1-Dichloroethylene	ug/g	<0.050	0.050	7392157
cis-1,2-Dichloroethylene	ug/g	<0.050	0.050	7392157
trans-1,2-Dichloroethylene	ug/g	<0.050	0.050	7392157
1,2-Dichloropropane	ug/g	<0.050	0.050	7392157
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	7392157
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	7392157
Ethylbenzene	ug/g	<0.020	0.020	7392157
Ethylene Dibromide	ug/g	<0.050	0.050	7392157
Hexane	ug/g	<0.050	0.050	7392157
Methylene Chloride(Dichloromethane)	ug/g	<0.050	0.050	7392157
RDL = Reportable Detection Limit	•		•	
QC Batch = Quality Control Batch				

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID		PTI259		
Sampling Dato		2021/06/01		
Sampling Date		08:30		
COC Number		792128-121-01		
	UNITS	BH-102 SS7 (4.6-5.2M)	RDL	QC Batch
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	0.50	7392157
Methyl Isobutyl Ketone	ug/g	<0.50	0.50	7392157
Methyl t-butyl ether (MTBE)	ug/g	<0.050	0.050	7392157
Styrene	ug/g	<0.050	0.050	7392157
1,1,1,2-Tetrachloroethane	ug/g	<0.050	0.050	7392157
1,1,2,2-Tetrachloroethane	ug/g	<0.050	0.050	7392157
Tetrachloroethylene	ug/g	<0.050	0.050	7392157
Toluene	ug/g	<0.020	0.020	7392157
1,1,1-Trichloroethane	ug/g	<0.050	0.050	7392157
1,1,2-Trichloroethane	ug/g	<0.050	0.050	7392157
Trichloroethylene	ug/g	<0.050	0.050	7392157
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	0.050	7392157
Vinyl Chloride	ug/g	<0.020	0.020	7392157
p+m-Xylene	ug/g	<0.020	0.020	7392157
o-Xylene	ug/g	<0.020	0.020	7392157
Total Xylenes	ug/g	<0.020	0.020	7392157
F1 (C6-C10)	ug/g	<10	10	7392157
F1 (C6-C10) - BTEX	ug/g	<10	10	7392157
F2-F4 Hydrocarbons			•	
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	7393224
F3 (C16-C34 Hydrocarbons)	ug/g	80	50	7393224
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	7393224
Reached Baseline at C50	ug/g	Yes		7393224
Surrogate Recovery (%)				
o-Terphenyl	%	88		7393224
4-Bromofluorobenzene	%	93		7392157
D10-o-Xylene	%	82		7392157
D4-1,2-Dichloroethane	%	95		7392157
D8-Toluene	%	101		7392157
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

TEST SUMMARY

BV Labs ID: PTI234

Collected: 2021/05/27

Sample ID: BH-3 SS3 (1.5-2.1M) Matrix: Soil

Shipped: 2021/06/04 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	7395236	2021/06/08	2021/06/08	Medhat Nasr
Free (WAD) Cyanide	TECH	7394587	2021/06/08	2021/06/08	Aditiben Patel
Conductivity	AT	7397185	2021/06/09	2021/06/09	Khushbu Vijay kumar Patel
Hexavalent Chromium in Soil by IC	IC/SPEC	7395470	2021/06/08	2021/06/09	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	7395393	2021/06/08	2021/06/09	Daniel Teclu
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)
pH CaCl2 EXTRACT	AT	7397483	2021/06/09	2021/06/09	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	7391452	N/A	2021/06/10	Automated Statchk

BV Labs ID: PTI235 Sample ID: BH-4 SS1 (0.0-0.6M)

Soil

Soil

BH-4 SS1D (0.0-0.6M)

Matrix:

2021/05/28 Collected:

Shipped:

2021/06/04 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	7393020	N/A	2021/06/07	Gurpreet Kaur (ONT)
OC Pesticides (Selected) & PCB	GC/ECD	7395123	2021/06/08	2021/06/09	Li Peng
OC Pesticides Summed Parameters	CALC	7391451	N/A	2021/06/08	Automated Statchk

BV Labs ID: PTI236

Sample ID:

Matrix:

Collected: 2021/05/28

Shipped:

Received: 2021/06/04

Date Analyzed Test Description Instrumentation Batch **Extracted** Analyst Moisture BAL 7393020 N/A 2021/06/07 Gurpreet Kaur (ONT) OC Pesticides (Selected) & PCB GC/ECD 7395123 2021/06/08 2021/06/09 Li Peng **OC Pesticides Summed Parameters** CALC 7391451 N/A 2021/06/08 **Automated Statchk**

BV Labs ID: PTI237

Collected: Sample ID: BH-4 SS3 (1.5-2.1M)

Shipped:

2021/05/28

Matrix:

Received: 2021/06/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	7395236	2021/06/08	2021/06/08	Medhat Nasr
Free (WAD) Cyanide	TECH	7394587	2021/06/08	2021/06/08	Aditiben Patel
Conductivity	AT	7397185	2021/06/09	2021/06/09	Khushbu Vijay kumar Patel
Hexavalent Chromium in Soil by IC	IC/SPEC	7395470	2021/06/08	2021/06/09	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	7395393	2021/06/08	2021/06/09	Daniel Teclu
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)
pH CaCl2 EXTRACT	AT	7397483	2021/06/09	2021/06/09	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	7391452	N/A	2021/06/10	Automated Statchk

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

2021/06/10

TEST SUMMARY

BV Labs ID: PTI238 **Sample ID:** BH-4 SS3D (1.5-2.1M) Matrix: Soil

Collected: 2021/05/28

Shipped:

2021/06/04 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	7395236	2021/06/08	2021/06/08	Medhat Nasr
Free (WAD) Cyanide	TECH	7394587	2021/06/08	2021/06/08	Aditiben Patel
Conductivity	AT	7397185	2021/06/09	2021/06/09	Khushbu Vijay kumar Patel
Hexavalent Chromium in Soil by IC	IC/SPEC	7394948	2021/06/08	2021/06/09	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	7395627	2021/06/08	2021/06/08	Prempal Bhatti
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)
pH CaCl2 EXTRACT	AT	7397483	2021/06/09	2021/06/09	Neil Dassanayake

BV Labs ID: PTI238 Dup

Soil

Matrix:

Sodium Adsorption Ratio (SAR)

Collected: 2021/05/28 Sample ID: BH-4 SS3D (1.5-2.1M) Shipped:

N/A

7391452

CALC/MET

2021/06/04 Received:

Automated Statchk

Date Analyzed Test Description Instrumentation Batch Extracted Analyst 2021/06/08 Acid Extractable Metals by ICPMS ICP/MS 7395627 2021/06/08 Prempal Bhatti

BV Labs ID: PTI239

Sample ID: BH-7 SS1 (0.0-0.6M)

Matrix: Soil

Collected: 2021/05/28 Shipped:

Received: 2021/06/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	7393020	N/A	2021/06/07	Gurpreet Kaur (ONT)
OC Pesticides (Selected) & PCB	GC/ECD	7395123	2021/06/08	2021/06/09	Li Peng
OC Pesticides Summed Parameters	CALC	7391451	N/A	2021/06/08	Automated Statchk

BV Labs ID: PTI240

Sample ID: BH-7 SS5 (3.1-3.7)

Matrix: Soil Collected:

2021/05/28

Shipped: Received:

2021/06/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	7395236	2021/06/08	2021/06/08	Medhat Nasr
Free (WAD) Cyanide	TECH	7394587	2021/06/08	2021/06/08	Aditiben Patel
Conductivity	AT	7397185	2021/06/09	2021/06/09	Khushbu Vijay kumar Patel
Hexavalent Chromium in Soil by IC	IC/SPEC	7395470	2021/06/08	2021/06/09	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	7395393	2021/06/08	2021/06/09	Daniel Teclu
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)
pH CaCl2 EXTRACT	AT	7397483	2021/06/09	2021/06/09	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	7391452	N/A	2021/06/10	Automated Statchk

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

TEST SUMMARY

BV Labs ID: PTI241 Matrix: Soil

2021/05/27 Collected: Sample ID: BH-12 SS2 (0.8-1.4M)

Shipped:

Received: 2021/06/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	7393020	N/A	2021/06/07	Gurpreet Kaur (ONT)
OC Pesticides (Selected) & PCB	GC/ECD	7395123	2021/06/08	2021/06/09	Li Peng
OC Pesticides Summed Parameters	CALC	7391451	N/A	2021/06/08	Automated Statchk

BV Labs ID: PTI242 Matrix: Soil

Collected: 2021/05/27 Sample ID: BH-12 SS3 (1.5-2.1M)

Shipped:

Received: 2021/06/04

Extracted **Date Analyzed Test Description** Instrumentation Batch **Analyst** Hot Water Extractable Boron 2021/06/08 ICP 7395236 2021/06/08 Medhat Nasr Free (WAD) Cyanide **TECH** 7394587 2021/06/08 2021/06/08 Aditiben Patel ΑТ 2021/06/09 Khushbu Vijay kumar Patel Conductivity 7397185 2021/06/09 2021/06/09 Hexavalent Chromium in Soil by IC IC/SPEC 7394948 2021/06/08 Violeta Porcila Acid Extractable Metals by ICPMS 2021/06/08 ICP/MS 7395393 2021/06/09 Daniel Teclu 2021/06/07 Gurpreet Kaur (ONT) Moisture BAL 7393235 N/A pH CaCl2 EXTRACT ΑT 7397483 2021/06/09 2021/06/09 Neil Dassanayake CALC/MET 2021/06/10 Sodium Adsorption Ratio (SAR) 7391452 N/A Automated Statchk

BV Labs ID: PTI243

Soil

Matrix:

Collected: 2021/05/26 Sample ID: BH-14 SS2 (0.8-1.4M) Shipped:

Collected:

Shipped:

2021/06/04 Received:

Test Description Instrumentation **Extracted Date Analyzed** Analyst **Batch** 7393020 2021/06/07 Gurpreet Kaur (ONT) Moisture BAL N/A OC Pesticides (Selected) & PCB GC/ECD 7395123 2021/06/08 2021/06/09 Li Peng **OC Pesticides Summed Parameters** CALC 7391451 N/A 2021/06/08 **Automated Statchk**

BV Labs ID: PTI251

Sample ID: BH-14 SS3 (1.5-2.1M)

Matrix: Soil

2021/06/04 Received:

2021/05/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	7395236	2021/06/08	2021/06/08	Medhat Nasr
Free (WAD) Cyanide	TECH	7394587	2021/06/08	2021/06/08	Aditiben Patel
Conductivity	AT	7397185	2021/06/09	2021/06/09	Khushbu Vijay kumar Patel
Hexavalent Chromium in Soil by IC	IC/SPEC	7394948	2021/06/08	2021/06/09	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	7395393	2021/06/08	2021/06/09	Daniel Teclu
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)
pH CaCl2 EXTRACT	AT	7397483	2021/06/09	2021/06/09	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	7391452	N/A	2021/06/10	Automated Statchk

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

TEST SUMMARY

BV Labs ID: PTI252

Collected: 2021/05/31

Sample ID: BH-16 SS2 (0.8-1.4M) Matrix: Soil

Shipped: Received: 2021/06/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	7393020	N/A	2021/06/07	Gurpreet Kaur (ONT)
Polychlorinated Biphenyl in Soil	GC/ECD	7394457	2021/06/07	2021/06/08	Svitlana Shaula

BV Labs ID: PTI253 Matrix: Soil

2021/05/31 Collected: Sample ID: BH-16 SS3 (1.5-2.1M)

Shipped:

Received: 2021/06/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7393649	N/A	2021/06/08	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7393224	2021/06/07	2021/06/08	Jeevaraj Jeevaratrnam
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)

BV Labs ID: PTI254 Matrix: Soil

Collected: 2021/06/01 Sample ID: BH-101 SS1 (0.0-0.6M)

Shipped:

Received: 2021/06/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	7395236	2021/06/08	2021/06/08	Medhat Nasr
Free (WAD) Cyanide	TECH	7394587	2021/06/08	2021/06/08	Aditiben Patel
Conductivity	AT	7397185	2021/06/09	2021/06/09	Khushbu Vijay kumar Patel
Hexavalent Chromium in Soil by IC	IC/SPEC	7395470	2021/06/08	2021/06/09	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	7395393	2021/06/08	2021/06/09	Daniel Teclu
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)
pH CaCl2 EXTRACT	AT	7397483	2021/06/09	2021/06/09	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	7391452	N/A	2021/06/10	Automated Statchk

BV Labs ID: PTI255 Matrix: Soil

Collected: 2021/06/01 BH-101 SS4 (2.3-2.7M) Sample ID: Shipped:

2021/06/04 Received:

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 7393649 N/A 2021/06/08 Domnica Andronescu Petroleum Hydrocarbons F2-F4 in Soil GC/FID 7393224 2021/06/07 2021/06/08 Jeevaraj Jeevaratrnam Moisture BAL 7393235 N/A 2021/06/07 Gurpreet Kaur (ONT)

BV Labs ID: PTI256

Collected: 2021/06/01 **Sample ID:** BH-102 SS5 (3.1-3.7M)

Shipped:

Received: 2021/06/04 Matrix: Soil

lest Description	instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	7391450	N/A	2021/06/11	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7393224	2021/06/07	2021/06/08	Jeevaraj Jeevaratrnam
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7392157	N/A	2021/06/11	Manpreet Sarao

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

TEST SUMMARY

BV Labs ID: PTI257

Sample ID: BH-102 SS5D (3.1-3.7M)

Matrix: Soil

Collected: 2 Shipped:

2021/06/01

Received: 2021/06/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	7391450	N/A	2021/06/11	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7393224	2021/06/07	2021/06/08	Jeevaraj Jeevaratrnam
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7392157	N/A	2021/06/11	Manpreet Sarao

BV Labs ID: PTI258

Sample ID: BH-102 SS6 (3.8-4.4M)

Matrix: Soil

Collected: 2021/06/01 **Shipped:**

Received: 2021/06/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	7391450	N/A	2021/06/11	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7393224	2021/06/07	2021/06/08	Jeevaraj Jeevaratrnam
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7392157	N/A	2021/06/11	Manpreet Sarao

BV Labs ID: PTI259

Sample ID: BH-102 SS7 (4.6-5.2M)

Matrix: Soil

Collected: 2021/06/01 Shipped:

Received: 2021/06/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	7391450	N/A	2021/06/11	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7393224	2021/06/07	2021/06/08	Jeevaraj Jeevaratrnam
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7392157	N/A	2021/06/11	Manpreet Sarao

BV Labs ID: PTI260

Sample ID: BH-103 SS6 (3.8-4.4M)

Matrix: Soil

Collected: Shipped:

2021/06/01

Received: 2021/06/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7393649	N/A	2021/06/08	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7393224	2021/06/07	2021/06/08	Jeevaraj Jeevaratrnam
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)

BV Labs ID: PTI261

Sample ID: BH-104 SS4 (2.3-2.7M)

Matrix: Soil

Collected: 2021/ Shipped:

2021/06/02

Received: 2021/06/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7393649	N/A	2021/06/08	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7393224	2021/06/07	2021/06/08	Jeevaraj Jeevaratrnam
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

TEST SUMMARY

BV Labs ID: PTI261 Dup

Sample ID: BH-104 SS4 (2.3-2.7M)

Matrix: Soil

Collected: 2021/06/02

Shipped:

Received:

2021/06/04

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystMoistureBAL7393235N/A2021/06/07Gurpreet Kaur (ONT)

BV Labs ID: PTI262

Sample ID: BH-105 SS1 (0.0-0.6M)

Matrix: Soil

Collected: 2021/06/02

Shipped: Received: 2021/06/04

Test Description Instrumentation **Extracted Date Analyzed Batch Analyst** 2021/06/07 Gurpreet Kaur (ONT) Moisture BAL 7393020 N/A 2021/06/09 OC Pesticides (Selected) & PCB GC/ECD 7395123 2021/06/08 Li Peng **OC Pesticides Summed Parameters** CALC 7391451 N/A 2021/06/08 Automated Statchk

BV Labs ID: PTI263

Sample ID: BH-105 SS2 (0.8-1.4M)

Matrix: Soil

Collected: 2021/06/02 Shipped:

Received: 2021/06/04

Test Description Instrumentation Batch Extracted **Date Analyzed Analyst** 7395236 Hot Water Extractable Boron ICP 2021/06/08 2021/06/08 Medhat Nasr Free (WAD) Cyanide TECH 7394587 2021/06/08 2021/06/08 Aditiben Patel Khushbu Vijay kumar Patel 2021/06/09 2021/06/09 Conductivity ΑT 7397185 Hexavalent Chromium in Soil by IC IC/SPEC 7395470 2021/06/08 2021/06/09 Violeta Porcila Acid Extractable Metals by ICPMS ICP/MS 2021/06/08 7395393 2021/06/09 Daniel Teclu N/A 2021/06/07 Gurpreet Kaur (ONT) Moisture BAL 7393235 pH CaCl2 EXTRACT ΑТ 7397483 2021/06/09 2021/06/09 Neil Dassanayake Sodium Adsorption Ratio (SAR) CALC/MET 7391452 2021/06/10 N/A **Automated Statchk**

BV Labs ID: PTI263 Dup

Sample ID: BH-105 SS2 (0.8-1.4M)

Matrix: Soil

Collected: 2021/06/02 Shipped:

Received: 2021/06/04

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystHexavalent Chromium in Soil by ICIC/SPEC73954702021/06/082021/06/09Violeta Porcila

BV Labs ID: PTI264

Sample ID: BH-106 SS4 (0.8-1.4M)

Matrix: Soil

Collected: 2021/06/02 Shipped:

Received: 2021/06/04

Test Description Instrumentation **Batch** Extracted Date Analyzed Analyst Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 7393649 N/A 2021/06/08 Domnica Andronescu Petroleum Hydrocarbons F2-F4 in Soil 2021/06/07 2021/06/08 GC/FID 7393224 Jeevaraj Jeevaratrnam BAL 7393235 2021/06/07 Gurpreet Kaur (ONT) Moisture N/A

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

TEST SUMMARY

BV Labs ID: PTI265 **Sample ID:** BH-107 SS2 (0.8-1.4M) Collected: 2021/06/02

Shipped:

2021/06/04 Received:

Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	7393020	N/A	2021/06/07	Gurpreet Kaur (ONT)
Polychlorinated Biphenyl in Soil	GC/ECD	7394457	2021/06/07	2021/06/08	Svitlana Shaula

BV Labs ID: PTI266 Matrix: Soil

Collected: 2021/06/02 **Sample ID:** BH-107 SS2D (0.8-1.4M)

Shipped:

Received: 2021/06/04

Test Description Instrumentation **Date Analyzed** Batch Extracted Analyst Moisture BAL 7393020 N/A 2021/06/07 Gurpreet Kaur (ONT) Polychlorinated Biphenyl in Soil 2021/06/07 GC/ECD 7394457 2021/06/08 Svitlana Shaula

BV Labs ID: PTI267

Collected: 2021/06/02 BH-107 SS3 (1.5-2.1M) Sample ID: Shipped:

2021/06/04

Matrix: Soil

Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7393649	N/A	2021/06/08	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7393224	2021/06/07	2021/06/08	Jeevaraj Jeevaratrnam
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)

BV Labs ID: PTI268

Sample ID: BH-108 SS2 (0.8-1.4M)

Matrix: Soil

Shipped: Received:

Collected:

2021/06/04

2021/06/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7393649	N/A	2021/06/08	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7393224	2021/06/07	2021/06/08	Jeevaraj Jeevaratrnam
Moisture	BAL	7393235	N/A	2021/06/07	Gurpreet Kaur (ONT)

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	PD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
7392157	4-Bromofluorobenzene	2021/06/10	97	60 - 140	98	60 - 140	94	%			
7392157	D10-o-Xylene	2021/06/10	82	60 - 130	95	60 - 130	81	%			
7392157	D4-1,2-Dichloroethane	2021/06/10	96	60 - 140	98	60 - 140	96	%			
7392157	D8-Toluene	2021/06/10	103	60 - 140	105	60 - 140	102	%			
7393224	o-Terphenyl	2021/06/08	84	60 - 130	81	60 - 130	89	%			
7393649	1,4-Difluorobenzene	2021/06/07	93	60 - 140	92	60 - 140	96	%			
7393649	4-Bromofluorobenzene	2021/06/07	102	60 - 140	103	60 - 140	99	%			
7393649	D10-o-Xylene	2021/06/07	104	60 - 140	102	60 - 140	96	%			
7393649	D4-1,2-Dichloroethane	2021/06/07	110	60 - 140	110	60 - 140	117	%			
7394457	Decachlorobiphenyl	2021/06/08	106	60 - 130	101	60 - 130	94	%			
7395123	2,4,5,6-Tetrachloro-m-xylene	2021/06/08	91	50 - 130	86	50 - 130	90	%			
7395123	Decachlorobiphenyl	2021/06/08	113	50 - 130	114	50 - 130	108	%			
7392157	1,1,1,2-Tetrachloroethane	2021/06/10	94	60 - 140	102	60 - 130	<0.050	ug/g	NC	50	
7392157	1,1,1-Trichloroethane	2021/06/10	92	60 - 140	94	60 - 130	<0.050	ug/g	NC	50	
7392157	1,1,2,2-Tetrachloroethane	2021/06/10	93	60 - 140	104	60 - 130	<0.050	ug/g	NC	50	
7392157	1,1,2-Trichloroethane	2021/06/10	93	60 - 140	103	60 - 130	<0.050	ug/g	NC	50	
7392157	1,1-Dichloroethane	2021/06/10	94	60 - 140	97	60 - 130	<0.050	ug/g	NC	50	
7392157	1,1-Dichloroethylene	2021/06/10	91	60 - 140	92	60 - 130	<0.050	ug/g	NC	50	
7392157	1,2-Dichlorobenzene	2021/06/10	94	60 - 140	103	60 - 130	<0.050	ug/g	NC	50	
7392157	1,2-Dichloroethane	2021/06/10	86	60 - 140	92	60 - 130	<0.050	ug/g	NC	50	
7392157	1,2-Dichloropropane	2021/06/10	97	60 - 140	103	60 - 130	<0.050	ug/g	NC	50	
7392157	1,3-Dichlorobenzene	2021/06/10	97	60 - 140	105	60 - 130	<0.050	ug/g	NC	50	
7392157	1,4-Dichlorobenzene	2021/06/10	116	60 - 140	125	60 - 130	<0.050	ug/g	NC	50	
7392157	Acetone (2-Propanone)	2021/06/10	86	60 - 140	96	60 - 140	<0.50	ug/g	NC	50	
7392157	Benzene	2021/06/10	93	60 - 140	96	60 - 130	<0.020	ug/g	NC	50	
7392157	Bromodichloromethane	2021/06/10	92	60 - 140	99	60 - 130	<0.050	ug/g	NC	50	
7392157	Bromoform	2021/06/10	91	60 - 140	102	60 - 130	<0.050	ug/g	NC	50	
7392157	Bromomethane	2021/06/10	92	60 - 140	95	60 - 140	<0.050	ug/g	NC	50	
7392157	Carbon Tetrachloride	2021/06/10	87	60 - 140	89	60 - 130	<0.050	ug/g	NC	50	
7392157	Chlorobenzene	2021/06/10	93	60 - 140	100	60 - 130	<0.050	ug/g	NC	50	

exp Services Inc

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7392157	Chloroform	2021/06/10	91	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
7392157	cis-1,2-Dichloroethylene	2021/06/10	95	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
7392157	cis-1,3-Dichloropropene	2021/06/10	88	60 - 140	95	60 - 130	<0.030	ug/g	NC	50
7392157	Dibromochloromethane	2021/06/10	90	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
7392157	Dichlorodifluoromethane (FREON 12)	2021/06/10	90	60 - 140	91	60 - 140	<0.050	ug/g	NC	50
7392157	Ethylbenzene	2021/06/10	88	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
7392157	Ethylene Dibromide	2021/06/10	92	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
7392157	F1 (C6-C10) - BTEX	2021/06/10					<10	ug/g	NC	30
7392157	F1 (C6-C10)	2021/06/10	102	60 - 140	94	80 - 120	<10	ug/g	NC	30
7392157	Hexane	2021/06/10	98	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
7392157	Methyl Ethyl Ketone (2-Butanone)	2021/06/10	96	60 - 140	108	60 - 140	<0.50	ug/g	NC	50
7392157	Methyl Isobutyl Ketone	2021/06/10	88	60 - 140	100	60 - 130	<0.50	ug/g	NC	50
7392157	Methyl t-butyl ether (MTBE)	2021/06/10	86	60 - 140	91	60 - 130	<0.050	ug/g	NC	50
7392157	Methylene Chloride(Dichloromethane)	2021/06/10	96	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
7392157	o-Xylene	2021/06/10	88	60 - 140	94	60 - 130	<0.020	ug/g	NC	50
7392157	p+m-Xylene	2021/06/10 90 60 - 140 96 60 - 130		<0.020	ug/g	NC	50			
7392157	Styrene	2021/06/10	98	60 - 140	107	60 - 130	<0.050	ug/g	NC	50
7392157	Tetrachloroethylene	2021/06/10	90	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
7392157	Toluene	2021/06/10	89	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
7392157	Total Xylenes	2021/06/10					<0.020	ug/g	NC	50
7392157	trans-1,2-Dichloroethylene	2021/06/10	96	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
7392157	trans-1,3-Dichloropropene	2021/06/10	95	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
7392157	Trichloroethylene	2021/06/10	99	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
7392157	Trichlorofluoromethane (FREON 11)	2021/06/10	87	60 - 140	88	60 - 130	<0.050	ug/g	NC	50
7392157	Vinyl Chloride	2021/06/10	102	60 - 140	103	60 - 130	<0.020	ug/g	NC	50
7393020	Moisture	2021/06/07							3.2	20
7393224	F2 (C10-C16 Hydrocarbons)	2021/06/08	99	50 - 130	95	80 - 120	<10	ug/g	NC	30
7393224	F3 (C16-C34 Hydrocarbons)	2021/06/08	98	50 - 130	98	80 - 120	<50	ug/g	0.15	30
7393224	F4 (C34-C50 Hydrocarbons)	2021/06/08	101	50 - 130	98	80 - 120	<50	ug/g	NC	30
7393235	Moisture	2021/06/07							0	20

exp Services Inc

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	 D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7393649	Benzene	2021/06/07	114	50 - 140	105	50 - 140	<0.020	ug/g	NC	50
7393649	Ethylbenzene	2021/06/07	121	50 - 140	112	50 - 140	<0.020	ug/g	NC	50
7393649	F1 (C6-C10) - BTEX	2021/06/07					<10	ug/g	NC	30
7393649	F1 (C6-C10)	2021/06/07	100	60 - 140	93	80 - 120	<10	ug/g	NC	30
7393649	o-Xylene	2021/06/07	119	50 - 140	110	50 - 140	<0.020	ug/g	NC	50
7393649	p+m-Xylene	2021/06/07	117	50 - 140	108	50 - 140	<0.040	ug/g	NC	50
7393649	Toluene	2021/06/07	111	50 - 140	103	50 - 140	<0.020	ug/g	NC	50
7393649	Total Xylenes	2021/06/07					<0.040	ug/g	NC	50
7394457	Aroclor 1242	2021/06/08					<0.010	ug/g	NC	50
7394457	Aroclor 1248	2021/06/08					<0.010	ug/g	NC	50
7394457	Aroclor 1254	2021/06/08					<0.010	ug/g	NC	50
7394457	Aroclor 1260	2021/06/08	124	30 - 130	116	30 - 130	<0.010	ug/g	NC	50
7394457	Total PCB	2021/06/08	124	30 - 130	116	30 - 130	<0.010	ug/g	NC	50
7394587	WAD Cyanide (Free)	2021/06/08	68 (1)	75 - 125	94	80 - 120	<0.01	ug/g	NC	35
7394948	Chromium (VI)	2021/06/09	77	70 - 130	97	80 - 120	<0.18	ug/g	NC	35
7395123	a-Chlordane	2021/06/09	91	50 - 130	87	50 - 130	<0.0020	ug/g	NC	40
7395123	Aldrin	2021/06/09	83	50 - 130	80	50 - 130	<0.0020	ug/g	NC	40
7395123	Aroclor 1242	2021/06/09					<0.015	ug/g	NC	40
7395123	Aroclor 1248	2021/06/09					<0.015	ug/g	NC	40
7395123	Aroclor 1254	2021/06/09					<0.015	ug/g	NC	40
7395123	Aroclor 1260	2021/06/09					<0.015	ug/g	NC	40
7395123	Dieldrin	2021/06/09	97	50 - 130	110	50 - 130	<0.0020	ug/g	NC	40
7395123	Endosulfan I (alpha)	2021/06/09	124	50 - 130	87	50 - 130	<0.0020	ug/g	NC	40
7395123	Endosulfan II (beta)	2021/06/09	116	50 - 130	102	50 - 130	<0.0020	ug/g	NC	40
7395123	Endrin	2021/06/09	109	50 - 130	102	50 - 130	<0.0020	ug/g	NC	40
7395123	g-Chlordane	2021/06/09	95	50 - 130	88	50 - 130	<0.0020	ug/g	NC	40
7395123	Heptachlor epoxide	2021/06/09	115	50 - 130	112	50 - 130	<0.0020	ug/g	NC	40
7395123	Heptachlor	2021/06/09	81	50 - 130	80	50 - 130	<0.0020	ug/g	NC	40
7395123	Hexachlorobenzene	2021/06/09	90	50 - 130	96	50 - 130	<0.0020	ug/g	NC	40
7395123	Hexachlorobutadiene	2021/06/09	100	50 - 130	93	50 - 130	<0.0020	ug/g	NC	40

exp Services Inc

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7395123	Hexachloroethane	2021/06/09	82	50 - 130	84	50 - 130	<0.0020	ug/g	NC	40
7395123	Lindane	2021/06/09	81	50 - 130	78	50 - 130	<0.0020	ug/g	NC	40
7395123	Methoxychlor	2021/06/09	119	50 - 130	127	50 - 130	<0.0050	ug/g	NC	40
7395123	o,p-DDD	2021/06/09	104	50 - 130	98	50 - 130	<0.0020	ug/g	NC	40
7395123	o,p-DDE	2021/06/09	82	50 - 130	85	85 50 - 130		ug/g	NC	40
7395123	o,p-DDT	2021/06/09	96	50 - 130	105	50 - 130	<0.0020	ug/g	NC	40
7395123	p,p-DDD	2021/06/09	97	50 - 130	97	50 - 130	<0.0020	ug/g	NC	40
7395123	p,p-DDE	2021/06/09	88	50 - 130	84	50 - 130	<0.0020	ug/g	NC	40
7395123	p,p-DDT	2021/06/09	110	50 - 130	104	50 - 130	<0.0020	ug/g	NC	40
7395236	Hot Water Ext. Boron (B)	2021/06/08	102	75 - 125	99	75 - 125	<0.050	ug/g	8.2	40
7395393	Acid Extractable Antimony (Sb)	2021/06/09	94	75 - 125	104	80 - 120	<0.20	ug/g	NC	30
7395393	Acid Extractable Arsenic (As)	2021/06/09	97	75 - 125	101	80 - 120	<1.0	ug/g	7.6	30
7395393	Acid Extractable Barium (Ba)	2021/06/09	NC	75 - 125	105	80 - 120	<0.50	ug/g	2.6	30
7395393	Acid Extractable Beryllium (Be)	2021/06/09	98	75 - 125	95	80 - 120	<0.20	ug/g	4.3	30
7395393	Acid Extractable Boron (B)	2021/06/09	95	75 - 125	96	80 - 120	<5.0	ug/g	3.5	30
7395393	Acid Extractable Cadmium (Cd)	2021/06/09	96	75 - 125	98	80 - 120	<0.10	ug/g	NC	30
7395393	Acid Extractable Chromium (Cr)	2021/06/09	95	75 - 125	102	80 - 120	<1.0	ug/g	0.57	30
7395393	Acid Extractable Cobalt (Co)	2021/06/09	93	75 - 125	99	80 - 120	<0.10	ug/g	2.1	30
7395393	Acid Extractable Copper (Cu)	2021/06/09	93	75 - 125	98	80 - 120	<0.50	ug/g	5.3	30
7395393	Acid Extractable Lead (Pb)	2021/06/09	93	75 - 125	100	80 - 120	<1.0	ug/g	1.8	30
7395393	Acid Extractable Mercury (Hg)	2021/06/09	82	75 - 125	84	80 - 120	<0.050	ug/g	NC	30
7395393	Acid Extractable Molybdenum (Mo)	2021/06/09	98	75 - 125	101	80 - 120	<0.50	ug/g	9.3	30
7395393	Acid Extractable Nickel (Ni)	2021/06/09	93	75 - 125	102	80 - 120	<0.50	ug/g	6.6	30
7395393	Acid Extractable Selenium (Se)	2021/06/09	97	75 - 125	99	80 - 120	<0.50	ug/g	NC	30
7395393	Acid Extractable Silver (Ag)	2021/06/09	94	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
7395393	Acid Extractable Thallium (TI)	2021/06/09	95 75 - 125		102	80 - 120	<0.050	ug/g	NC	30
7395393	Acid Extractable Uranium (U)	2021/06/09	09 97 75 - 125		103	80 - 120	<0.050	ug/g	6.9	30
7395393	Acid Extractable Vanadium (V)	2021/06/09	101	75 - 125	102	80 - 120	<5.0	ug/g	4.9	30
7395393	Acid Extractable Zinc (Zn)	2021/06/09	104	75 - 125	93	80 - 120	<5.0	ug/g	0.85	30
7395470	Chromium (VI)	2021/06/09	37 (2)	70 - 130	98 80 - 120		<0.18 ug/g		NC	35

exp Services Inc

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

			Matrix Spike		SPIKED	BLANK	Method I	Blank	RPD	
QC Batch	Parameter	Date	% Recovery QC Limits % R		% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7395627	Acid Extractable Antimony (Sb)	2021/06/08	102	75 - 125	102	80 - 120	<0.20	ug/g	NC	30
7395627	Acid Extractable Arsenic (As)	2021/06/08	104	75 - 125	102	80 - 120	<1.0	ug/g	2.4	30
7395627	Acid Extractable Barium (Ba)	2021/06/08	103	75 - 125	101	80 - 120	<0.50	ug/g	0.96	30
7395627	Acid Extractable Beryllium (Be)	2021/06/08	102	75 - 125	99	80 - 120	<0.20	ug/g	6.2	30
7395627	Acid Extractable Boron (B)	2021/06/08	97	75 - 125	94	80 - 120	<5.0	ug/g	NC	30
7395627	Acid Extractable Cadmium (Cd)	2021/06/08	104	75 - 125	100	80 - 120	<0.10	ug/g	0.17	30
7395627	Acid Extractable Chromium (Cr)	2021/06/08	98	75 - 125	99	80 - 120	<1.0	ug/g	1.5	30
7395627	Acid Extractable Cobalt (Co)	2021/06/08	103	75 - 125	100	80 - 120	<0.10	ug/g	0.59	30
7395627	Acid Extractable Copper (Cu)	2021/06/08	102	75 - 125	100	80 - 120	<0.50	ug/g	3.2	30
7395627	Acid Extractable Lead (Pb)	2021/06/08	99	75 - 125	100	80 - 120	<1.0	ug/g	2.6	30
7395627	Acid Extractable Mercury (Hg)	2021/06/08	94	75 - 125	94	80 - 120	<0.050	ug/g	1.2	30
7395627	Acid Extractable Molybdenum (Mo)	2021/06/08	104	75 - 125	99	80 - 120	<0.50	ug/g	NC	30
7395627	Acid Extractable Nickel (Ni)	2021/06/08	103	75 - 125	103	80 - 120	<0.50	ug/g	0.76	30
7395627	Acid Extractable Selenium (Se)	2021/06/08	104	75 - 125	103	80 - 120	<0.50	ug/g	NC	30
7395627	Acid Extractable Silver (Ag)	2021/06/08	108	75 - 125	104	80 - 120	<0.20	ug/g	NC	30
7395627	Acid Extractable Thallium (TI)	2021/06/08	102	75 - 125	102	80 - 120	<0.050	ug/g	1.6	30
7395627	Acid Extractable Uranium (U)	2021/06/08	104	75 - 125	102	80 - 120	<0.050	ug/g	4.6	30
7395627	Acid Extractable Vanadium (V)	2021/06/08	105	75 - 125	101	80 - 120	<5.0	ug/g	0.96	30
7395627	Acid Extractable Zinc (Zn)	2021/06/08	103	75 - 125	99	80 - 120	<5.0	ug/g	0.60	30
7397185	Conductivity	2021/06/09			100	90 - 110	<0.002	mS/cm	1.5	10

Report Date: 2021/06/11

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value UNITS		Value (%)	QC Limits	
7397483	Available (CaCl2) pH	2021/06/09			100	97 - 103			0.044	N/A	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (2) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The matrix spike was reanalyzed to confirm result.

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GROOMLEY

Your P.O. #: MRK-GEO Sampler Initials: AS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

C		Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Onte	no Canada L5N 2L8	Tel:(905) 817-57	00 Toll-free:800	-563-6266 Fax(905) 817-57	77 www.b	vlabs com	1					CHAIN	OF CUST	ODY RECORD	Page of 3
		IVOICE TO:			REPO	RT TO:						PROJECT	INFORMATION:			T	Laboratory Use	Only:
Company N	lame: #17485 exp Sei	rvices Inc	Company N	lame:	6	XP Service	Tuc	No.		Quotation		B9171	8				BV Labs Job #:	Bottle Order #:
Attention: Address:		Valley Dr W Suite 500	Altention: Address:	Victor T	esander Si	na Chiana:	Sine	· Can;		100	IRK-GE		00609060-A0		BRM- 2	010864-	B0	792128
	Markham ON L3	T 0A8		50m	no Chiana	@exp-com	aleksan	dar so	ricecyp	(Project Na	me:	15460	Woodbine 1	venue (Formley	Ontario	COC #:	Project Manager:
Tel: Email:	(905) 695-3217 simon.lan@exp.o		Tel: Email:	- victor ta	m@ окр.соп	Fax: , simon.lan@				Sampled E	y:	As					C#792128-83-01	Christine Gripton
MOE	REGULATED DRINKIN SUBMITTED	G WATER OR WATER INTENDED F ON THE BV LABS DRINKING WATE	OR HUMAN CO R CHAIN OF CL	NSUMPTION I ISTODY	MUST BE				AN	ALYSIS RE	DUESTED	(PLEASE B	E SPECIFIC)	1		3000000	Turnaround Time (TAT) R Please provide advance notice for	
Table 1	gulation 153 (2011) Res/Park Medium Ind/Comm Coarse	Other Regulations	Bylaw rlaw	Special Ins	structions	Field Filtered (please circle): Metals / Hg / Cr VI	Metals + Inogonias	PCAS	Peshendes	STEX+ PULCE-FA)	VOC.					(will be applie Standard TA Please note days - contac	standard) TAT: d if Rush TAT is not specified): = 5-7 Working days for most tests Standard TAT for certain tests such as B your Project Manager for details. G Rush TAT (if applies to entire subr	OD and Dioxins/Furans are > 5
		Other				J Filt	五	PC		TE						Date Require	Charles and the second	ne Required:
т.		a on Certificate of Analysis (Y/N)?				E -	Z		20	a				1			nation Number:(c	all lab for #)
S	Sample Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix					HE.						# of Bottles	Comm	ents
1		BH-3 553 (1.5-2.1m)	2021/05/27		Soil		V									Í		
2		BH-4 551 (00-0.6m)	2021/05/28						1							. 1		
3		BH-4 551 D (0.0-0.6m)							V							1		
4		BH-4 553 (1.5-2.lm)					~	1								1	04-Jun-21 Christine Gripto	
5		BH-4553 b (1.5-2.1m)					/									1	C1F3550	n
6		BH-7 551 (0.0-0.6m)							~							i	TIDE ENTUR	2
7		BH-7 555 (3.1-3.7m)	V				1									- (
8		BH-12 552 (0.8-1.4m)	2021/05/27						/							· (
9		BH-12 553 (1.5 - 2.1m)	2021/05/24			1	V									i		
10		THE STATE OF THE S	2021/05/26		V	145			~							1		
- m	RELINQUISHED BY: (S	The state of the s	M/DD) Tim	e		BY: (Signature/	Print)	_	Date: (YY/			me	# jars used an			Labora	atory Use Only	
Alle	for Sauce Alek	sandar Saris 2021/06/	04 11:30	am Pm	1460	445/4	pone.	22	aul.o	6/04	15	:30	not submitte	Time S	Sensitive	Temperat	ture (°C) on Recei Custody S Present Intact	eal Yes No

Bureau Veritas Canada (2019) Inc.

so dive

SAMPLES MUST BE KEPT COOL (< 10° C) FROM TIME OF SAMPLING UNTIL DELIVERY TO BY LABS

IT IS THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS.

"SAMPLE CONTAINER, PRESERVATION, HOLD TIME AND PACKAGE INFORMATION CAN BE VIEWED AT WWW.BVLABS.COM/RESOURCES/CHAIN-OF-CUSTODY-FORMS.

CHAIN OF CUSTODY RECORD

		O		

INVOICE TO:			REPORT TO:						PROJECT INFORMATION:					Laboratory Use Only:					
Company Nam	e: #17485 exp Serv	ices Inc		Compar	ny Name:		ices Inc.				Quotation	u:	B91718	3	Warner VI		BV Labs Job #:	Bottle Orde	ler#:
Attention:	Simon Lan			Attentio	-Victor	Fam So Mir	Chrom:	Simon	an		P.O. #:		MRK-	-GE0					ann -
Address:		alley Dr W Suite 500		Address	Aleks	andar Saci	0 0				Project:		BRM-0	0609060-A0 (C	200) BRM-	21010864	-B0	792128	
	Markham ON L3T	0A8			- 9	leksandar.	Sarica ex	c. Com	1		Project Na	me:	15450	Woodbine A	Jenue Goral	er ontario	COC #:	Project Man	
Tel:	(905) 695-3217	Fax:		Tel:	Somina	am@exp.con	P. C.977 Fax:				Site #								
Email:	simon.lan@exp.co	om		Email:	victorit	am@exp.com	, simon.lan(@exp.con	n		Sampled E	Зу:	A5: 6	\G-			C#792128-121-01	Christine Gr	ripton
MOE RI		WATER OR WATER I				MUST BE				AN/	ALYSIS RE	QUESTED	PLEASE BE	SPECIFIC)			Turnaround Time (TA		
No. of the state o	SUBMITTED O	N THE BV LABS DRIN	KING WATE	R CHAIN OF	CUSTODY		-										Please provide advance noti	ce for rush projects	
Regul	ation 153 (2011)	Oth	er Regulations	5	Special Is	nstructions	circle):	3			C.						andard) TAT:		
Table 1	Res/Park Medium/	Fine CCME	Sanitary Sewer	Bylaw		IN MARKET	2 0 5	Š		L)	PHCS CF.						l if Rush TAT is not specified): = 5-7 Working days for most tests.		
Table 2	Ind/Comm Coarse	Reg 558.	Storm Sewer B	ylaw			/C	63		Se	00					Change Constitution	tandard TAT for certain tests such	as BOD and Dission From	
	Agri/Other For RSC		nicipality		Later West		9 B	L.	101	13	7					days - contact	your Project Manager for details.	as BOD and Dioxinsiruran	15 are > 5
Table			Reg 406 Table	е			Field Filtered (please c Metals / Hg / Cr VI	Metals + Inagonies	PCBs	Posticides		VOC			- 1	Job Specific	Rush TAT (if applies to entire s	ubmission)	R. L.
		Other			e dinner		Aeta Aeta	5	9	20	*	7				Date Required		Time Required:	
	Include Criteria	on Certificate of Analys	sis (Y/N)?				eld ~	S. C.		0	BTEX+		- 1			Rush Confirma	ation Number:	(call lab for #)	
San	nple Barcode Label	Sample (Location) Ident	ification	Date Sampled	Time Sampled	Matrix	- "	Σ			æ					# of Bottles	Co	mments	
			2. 4	500				1	1										
		BH- 14 SSS (1.5	-2.1m)	2021/05/26		Soil		1								1			
				2000															
2		B4-16 552 (0.8-	- (.4m)	2021/05/3									- 1			1 1			- 1
3	1	BH-16 553 (1.5-	Alon)	₩							V					2			1
																-			
4		BH-101 SSI (0.0	1.0.Gm)	2021/06/01	12:15 pm		1	1							1	1 1			1
		A CONTRACT OF THE PARTY OF THE											-			1			
5		BH-101 SEHC 2.3-	2.7m)		12:40 pm		1 1 1				/		- 1			2			1
_								\vdash		-	-	-				_			
6	-	BH-102 555 (3.	(-2.7m)		9:0000						~	-				3			
		124-167 442 6 1	2.11.12		1.0024					-		-		_		9			
7		BH-102 SSED (3.	(-21-)		9:00am		10				~	1				3			
		19H-10X 339D (3	1 - 3. Tm/		1. Viam														
8		BH-102 556 (3)	2-44-)		9:15000						v	~				3	Hall 1	0.10	
		1314-107 730 230	9 1. 100		1.17091											9	HOLD Y	OCs + PHCE	
9		BH-102 557 (4.6	-62-0		9:30am		1				~	~				3	HOLD VO	0.10	
		DM-10X JULY 4.0	J. W. P.		3.70000											9	HOLD VO	Ce + PHCE	
10		BH-103 556 (3.8	-44m)	V	1.20	V				1	1								
		Designation and the Control of the C			2:00 pm	•										2			
//	RELINQUISHED BY: (Sig		Date: (YY/I		Time		BY: (Signature	(Print)		Date: (YY/	MM/DD)	Ti	me	# jars used and not submitted		Laborat	ory Use Only		
alelin	da Jane Ale	ksondar Saric	2021/00	104 11	:30on	Sec	me	1						submitted	Time Sensitive	Temperatu	re (°C) on Recei Custor		No
47-1							1/	. V						The state of			Int		+
* UNLESS OTH	ERWISE AGREED TO IN WR	ITING, WORK SUBMITTED O	N THIS CHAIN	OF CUSTODY IS	SUBJECT TO BY LAN	S' STANDARD TE	RMS AND COND	ITIONS. SIG	NING OF	THIS CHAIN	OF CUSTO	DDY DOCUM	MENT IS	平金融	100		What had been seen as well as	te: BV Labs Yel	ellow: Client
Control Control States and Control		NOUISHER TO ENSURE THE						TODY MAY	ESULT IN	ANALYTIC	AL TAT DE	AVS		SAMPLES	S MUST BE KEPT CO	OOL(<10°C)F	ROM TIME OF SAMPLING		VII
											171 00				UNTIL DI	ELIVERY TO BV	LABS		
** SAMPLE CO	NTAINER, PRESERVATION.	HOLD TIME AND PACKAGE	INFORMATION	CAN BE VIEWED	AT WWW.BVLABS.	COM/RESOURCES	CHAIN-OF-CUS	TODY-FORM	IS						ALCOHOL: NO CONTRACT		A CONTRACTOR OF THE PARTY OF TH		

Bureau Veritas Canada (2019) Inc.

		Bureau Veritas Laborat	tories						\		-		-			3			Page 3 of 3	٦
EDUR DE AU		6740 Campobello Road	d, Mississauga, Ontar	io Canada L5N 2L	8 Tel (905) 817-57	00 Toll-free:800-	563-6266 Fax (905) 817-57	777 www.t	vlabs.com					CHAI	OF CUSTO	ODY RECORD			
VERITAS		NVOICE TO:				REPO	RT TO:		_			-	DBO IEC	T INFORMATION:			Labora	t U O-I		4
Company Name	-1022000			Company	Mama		ruices Inc		01				DAMESTATED	B91718			BV Labs Job #:	tory Use Onl	y: Bottle Order #:	\dashv
Attention:	Simon Lan			Attention:		am So Mi	an Channa	Sunt	20.7		Quotation P.O. #:	#:	_	-GE0			DV Cabs 300 W.			\dashv
Address:		Valley Dr W Suite 50	00	Address:	Alekso	ndar Saris	3 31	Jam 21 C	an i		Project:		BRM-	00609060-A0	G200) BRM.	21010864	-80		792128	
15.10	Markham ON L3	8A0 T			aleks	ender san	CP CXP. CT	m			Project Na	ime:	15450	Woodbine A	venue Gomle	ontario	COC#:		Project Manager:	
Tel:	(905) 695-3217 simon.lan@exp.	Fax:		Tet	saming.	chigne Bexporm	Com Fax				Site #:							EULU	Christine Gripton	
Email:			and the same and the same	Email:	-victor:te	m @exp.com	simon.lan@	gexp.con	n		Sampled I		AS;				C#792128-163-01			
MOE REC	SUBMITTED	IG WATER OR WATE ON THE BV LABS D	ER INTENDED FO RINKING WATER	OR HUMAN CO R CHAIN OF C	DNSUMPTION I USTODY	MUST BE				AN	ALYSIS RE	QUESTED	(PLEASE B	E SPECIFIC)	T T	12112/51795	Turnaround Please provide ad	Time (TAT) Requi		N D
Regulat	ion 153 (2011)	The second secon	Other Regulations		Special In	trustians	(e):				0				1 1	Regular (St	andard) TAT:	that the broad and the best of	No. of Concession, Name of Street, or other or o	7
	Res/Park Mediu		Sanitary Sewer B	Bylaw	Special III	structions	Field Filtered (please circle): Metals / Hg / Cr VI	Inorganies			(h)					S. S	if Rush TAT is not spec		V	1
	Ind/CommCoars	e Reg 558.	Storm Sewer Byla				/ Cr	300		(3	CE				1 1		= 5-7 Working days for		and Dioxins/Furans are > 5	
Table 3	Agri/Other For R		Municipality				을 로	i,		0	1	L7				days - contact	your Project Manager fo	or details.	na biolinar alans are - o	
		PWQ0 Other	Reg 406 Table				d Filtered (please c Metals / Hg / Cr VI	7	SS.	Pesticules	BTEX+PHCCE.	VOCS					Rush TAT (if applies			
	Include Criter	ia on Certificate of An	nahusia (V/Al) 2				Met	McCals 4.	PCBs	00	37.5	>				Date Required Rush Confirma	ation Number:	Time R	doiled	_
Sampl	e Barcode Label	Sample (Location)		Date Sampled	Time Sampled	Matrix	E E	T		0	_					# of Bottles		(call la Comments	b for #)	
	W-2014 SEC-2000	100.400.400		Date Sampled	Time Sampled	Wattix					-					07070.2200020		Comments		\dashv
1		BH-104 5541	(2.3-2Am)	2021/06/02	2:20 pm	Soil			9		1					2				
2		BH-105 551 (0	2.0-0.6m)		8:30am		de la			/						į				
3		BH-105 352 (0	2.8-1.4m)		8:40 am		N .	/								1				
4																-				\dashv
		BH-106 554 (2	1.3-2.7m)		11:20am		the same of the		I)		~					2				
5		BH-107 552 (1	0.8-1.4m)		2:45pm		370		V							1				
6									1											
		BH-1075524	(0.8-1.4m)		2:45 pm											1				
7		BH-107 553 ((1.5-2.1m)	V	2:55pm						~					2				
8		BH-108 532 (2.8-1.4m)	2021/16101	3:15pm	V					V					2				
9							AUT -4		1											
10																				_
	RELINQUISHED BY: (S						nie ja													
111/1	7 17		Date: (YY/MN			RECEIVED E	3Y: (Signature/	Print)		Date: (YY)	MM/DD)	T	ime	# jars used an not submitte			ory Use Only	Contact Cont	I Van I Na	
Milmolo		21010110	20211061		() Qen) ee	but	(Time Sensitive	Temperatu	ire (°C) on Recei	Custody Seal Present Intact	Yes No	
* IT IS THE RESPO	ONSIBILITY OF THE REL	RITING, WORK SUBMITTE OF OUR TERMS WHICH A INQUISHER TO ENSURE 1	THE ACCURACY OF T	HE CHAIN OF CU	STODY RECORD, A	N INCOMPLETE	TIONS. CHAIN OF CUST	ODY MAY R	RESULT IN				MENT IS	SAMP	ES MUST BE KEPT CO UNTIL D	DOL (< 10° C) F	ROM TIME OF SAMPI LABS	White: BV	Labs Yellow: Cli	ient
" SAMPLE CONT	AINER, PRESERVATION	, HOLD TIME AND PACKA	AGE INFORMATION CA	AN BE VIEWED AT	WWW.BVLABS.CO	M/RESOURCES/O	CHAIN-OF-CUST	ODY-FORM	MS.					-5X463						

Bureau Veritas Canada (2019) Inc.

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GROOMLEY

Client ID: BH-16 SS3 (1.5-2.1M)

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GROOMLEY

Client ID: BH-101 SS4 (2.3-2.7M)

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GROOMLEY

Client ID: BH-102 SS5 (3.1-3.7M)

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GROOMLEY

Client ID: BH-102 SS5D (3.1-3.7M)

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GROOMLEY

Client ID: BH-102 SS6 (3.8-4.4M)

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GROOMLEY

Client ID: BH-102 SS7 (4.6-5.2M)

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GROOMLEY

Client ID: BH-103 SS6 (3.8-4.4M)

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GROOMLEY

Client ID: BH-104 SS4 (2.3-2.7M)

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GROOMLEY

Client ID: BH-106 SS4 (0.8-1.4M)

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GROOMLEY

Client ID: BH-107 SS3 (1.5-2.1M)

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GROOMLEY

Client ID: BH-108 SS2 (0.8-1.4M)

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Your P.O. #: MRK- GEO

Your Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your C.O.C. #: na

Attention: Aleksandar Saric

exp Services Inc Markham Branch 220 Commerce Valley Dr W Suite 500 Markham, ON CANADA L3T 0A8

Report Date: 2021/06/15

Report #: R6677579 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1F6446 Received: 2021/06/08, 15:25

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
1,3-Dichloropropene Sum	1	N/A	2021/06/14		EPA 8260C m
1,3-Dichloropropene Sum	2	N/A	2021/06/15		EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Water	2	N/A	2021/06/11	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	4	2021/06/11	2021/06/11	CAM SOP-00316	CCME PHC-CWS m
Volatile Organic Compounds and F1 PHCs	1	N/A	2021/06/14	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds and F1 PHCs	1	N/A	2021/06/15	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Water	1	N/A	2021/06/13	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta

Your P.O. #: MRK- GEO

Your Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your C.O.C. #: na

Attention: Aleksandar Saric

exp Services Inc Markham Branch 220 Commerce Valley Dr W Suite 500 Markham, ON CANADA L3T 0A8

Report Date: 2021/06/15

Report #: R6677579 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1F6446 Received: 2021/06/08, 15:25

Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Patricia Legette, Project Manager

Email: Patricia.Legette@bureauveritas.com

Phone# (905)817-5799

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your P.O. #: MRK- GEO Sampler Initials: AS

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

BV Labs ID		PTX973	PTX974		
Sampling Date		2021/06/08 09:35	2021/06/08 10:05		
COC Number		na	na		
	UNITS	MW-103	MW-106	RDL	QC Batch
BTEX & F1 Hydrocarbons					
Benzene	ug/L	<0.20	<0.20	0.20	7402385
Toluene	ug/L	<0.20	<0.20	0.20	7402385
Ethylbenzene	ug/L	<0.20	<0.20	0.20	7402385
o-Xylene	ug/L	<0.20	<0.20	0.20	7402385
p+m-Xylene	ug/L	<0.40	<0.40	0.40	7402385
Total Xylenes	ug/L	<0.40	<0.40	0.40	7402385
F1 (C6-C10)	ug/L	<25	<25	25	7402385
F1 (C6-C10) - BTEX	ug/L	<25	<25	25	7402385
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	100	7402234
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	200	7402234
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	200	7402234
Reached Baseline at C50	ug/L	Yes	Yes		7402234
Surrogate Recovery (%)					
1,4-Difluorobenzene	%	94	92		7402385
4-Bromofluorobenzene	%	109	104		7402385
D10-o-Xylene	%	102	100		7402385
D4-1,2-Dichloroethane	%	103	104		7402385
o-Terphenyl	%	94	94		7402234
RDL = Reportable Detection L	imit				
QC Batch = Quality Control Ba	atch				

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your P.O. #: MRK- GEO Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

BV Labs ID		PTX971	PTX972			PTX972		
Sampling Date		2021/06/08	2021/06/08			2021/06/08		
Sampling Date		09:23	09:23			09:23		
COC Number		na	na			na		
	UNITS	MW-102	MW-102D	RDL	QC Batch	MW-102D Lab-Dup	RDL	QC Batch
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	<0.50	0.50	7395293			
Volatile Organics								
Acetone (2-Propanone)	ug/L	15	13	10	7402448	13	10	7402448
Benzene	ug/L	<0.20	<0.20	0.20	7402448	<0.20	0.20	7402448
Bromodichloromethane	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
Bromoform	ug/L	<1.0	<1.0	1.0	7402448	<1.0	1.0	7402448
Bromomethane	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
Carbon Tetrachloride	ug/L	<0.20	<0.20	0.20	7402448	<0.20	0.20	7402448
Chlorobenzene	ug/L	<0.20	<0.20	0.20	7402448	<0.20	0.20	7402448
Chloroform	ug/L	<0.20	<0.20	0.20	7402448	<0.20	0.20	7402448
Dibromochloromethane	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
1,3-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
1,4-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	<1.0	1.0	7402448	<1.0	1.0	7402448
1,1-Dichloroethane	ug/L	<0.20	<0.20	0.20	7402448	<0.20	0.20	7402448
1,2-Dichloroethane	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
1,1-Dichloroethylene	ug/L	<0.20	<0.20	0.20	7402448	<0.20	0.20	7402448
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
1,2-Dichloropropane	ug/L	<0.20	<0.20	0.20	7402448	<0.20	0.20	7402448
cis-1,3-Dichloropropene	ug/L	<0.30	<0.30	0.30	7402448	<0.30	0.30	7402448
trans-1,3-Dichloropropene	ug/L	<0.40	<0.40	0.40	7402448	<0.40	0.40	7402448
Ethylbenzene	ug/L	0.39	0.39	0.20	7402448	0.34	0.20	7402448
Ethylene Dibromide	ug/L	<0.20	<0.20	0.20	7402448	<0.20	0.20	7402448
Hexane	ug/L	<1.0	<1.0	1.0	7402448	<1.0	1.0	7402448
Methylene Chloride(Dichloromethane)	ug/L	<2.0	<2.0	2.0	7402448	<2.0	2.0	7402448
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	<10	10	7402448	<10	10	7402448
Methyl Isobutyl Ketone	ug/L	<5.0	<5.0	5.0	7402448	<5.0	5.0	7402448
RDL = Reportable Detection Limit			•					

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your P.O. #: MRK- GEO Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

BV Labs ID		PTX971	PTX972			PTX972		
Sampling Date		2021/06/08	2021/06/08			2021/06/08		
Jamping Date		09:23	09:23			09:23		
COC Number		na	na			na		
	UNITS	MW-102	MW-102D	RDL	QC Batch	MW-102D Lab-Dup	RDL	QC Batch
Methyl t-butyl ether (MTBE)	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
Styrene	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
1,1,1,2-Tetrachloroethane	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
Tetrachloroethylene	ug/L	<0.20	<0.20	0.20	7402448	<0.20	0.20	7402448
Toluene	ug/L	0.42	0.40	0.20	7402448	0.33	0.20	7402448
1,1,1-Trichloroethane	ug/L	<0.20	<0.20	0.20	7402448	<0.20	0.20	7402448
1,1,2-Trichloroethane	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
Trichloroethylene	ug/L	<0.20	<0.20	0.20	7402448	<0.20	0.20	7402448
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	<0.50	0.50	7402448	<0.50	0.50	7402448
Vinyl Chloride	ug/L	<0.20	<0.20	0.20	7402448	<0.20	0.20	7402448
p+m-Xylene	ug/L	0.56	0.53	0.20	7402448	0.47	0.20	7402448
o-Xylene	ug/L	2.9	2.6	0.20	7402448	2.3	0.20	7402448
Total Xylenes	ug/L	3.5	3.2	0.20	7402448	2.8	0.20	7402448
F1 (C6-C10)	ug/L	53	46	25	7402448	38	25	7402448
F1 (C6-C10) - BTEX	ug/L	49	43	25	7402448	35	25	7402448
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	100	7402234	<100	100	7402234
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	200	7402234	<200	200	7402234
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	200	7402234	<200	200	7402234
Reached Baseline at C50	ug/L	Yes	Yes		7402234	Yes		7402234
Surrogate Recovery (%)	-		-					
o-Terphenyl	%	94	95		7402234	94		7402234
4-Bromofluorobenzene	%	83	87		7402448	85		7402448
D4-1,2-Dichloroethane	%	116	117		7402448	117		7402448
D8-Toluene	%	89	92		7402448	81		7402448

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your P.O. #: MRK- GEO Sampler Initials: AS

O.REG 153 VOCS BY HS (WATER)

		PTX975		
Sampling Date		2021/06/08		
COC Number		na		
	UNITS	TRIP BLANK LOT#3699	RDL	QC Batch
Calculated Parameters				
,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	7395293
/olatile Organics			•	
Acetone (2-Propanone)	ug/L	<10	10	7402436
Benzene	ug/L	<0.20	0.20	7402436
Bromodichloromethane	ug/L	<0.50	0.50	7402436
Bromoform	ug/L	<1.0	1.0	7402436
Bromomethane	ug/L	<0.50	0.50	7402436
Carbon Tetrachloride	ug/L	<0.19	0.19	7402436
Chlorobenzene	ug/L	<0.20	0.20	7402436
Chloroform	ug/L	<0.20	0.20	7402436
Dibromochloromethane	ug/L	<0.50	0.50	7402436
,2-Dichlorobenzene	ug/L	<0.40	0.40	7402436
,3-Dichlorobenzene	ug/L	<0.40	0.40	7402436
,4-Dichlorobenzene	ug/L	<0.40	0.40	7402436
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	7402436
,1-Dichloroethane	ug/L	<0.20	0.20	7402436
,2-Dichloroethane	ug/L	<0.49	0.49	7402436
,1-Dichloroethylene	ug/L	<0.20	0.20	7402436
is-1,2-Dichloroethylene	ug/L	<0.50	0.50	7402436
rans-1,2-Dichloroethylene	ug/L	<0.50	0.50	7402436
,2-Dichloropropane	ug/L	<0.20	0.20	7402436
is-1,3-Dichloropropene	ug/L	<0.30	0.30	7402436
rans-1,3-Dichloropropene	ug/L	<0.40	0.40	7402436
thylbenzene	ug/L	<0.20	0.20	7402436
thylene Dibromide	ug/L	<0.19	0.19	7402436
lexane	ug/L	<1.0	1.0	7402436
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	7402436
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	7402436
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	7402436
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	7402436

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your P.O. #: MRK- GEO Sampler Initials: AS

O.REG 153 VOCS BY HS (WATER)

BV Labs ID		PTX975		
Sampling Date		2021/06/08		
COC Number		na		
	UNITS	TRIP BLANK LOT#3699	RDL	QC Batch
Styrene	ug/L	<0.40	0.40	7402436
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	7402436
1,1,2,2-Tetrachloroethane	ug/L	<0.40	0.40	7402436
Tetrachloroethylene	ug/L	<0.20	0.20	7402436
Toluene	ug/L	<0.20	0.20	7402436
1,1,1-Trichloroethane	ug/L	<0.20	0.20	7402436
1,1,2-Trichloroethane	ug/L	<0.40	0.40	7402436
Trichloroethylene	ug/L	<0.20	0.20	7402436
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	7402436
Vinyl Chloride	ug/L	<0.20	0.20	7402436
p+m-Xylene	ug/L	<0.20	0.20	7402436
o-Xylene	ug/L	<0.20	0.20	7402436
Total Xylenes	ug/L	<0.20	0.20	7402436
Surrogate Recovery (%)	•			
4-Bromofluorobenzene	%	97		7402436
D4-1,2-Dichloroethane	%	107		7402436
D8-Toluene	%	93		7402436
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

Report Date: 2021/06/15

exp Services Inc

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your P.O. #: MRK- GEO Sampler Initials: AS

TEST SUMMARY

BV Labs ID: PTX971 Sample ID: MW-102 Collected:

2021/06/08

Matrix: Water

Shipped: Received:

2021/06/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	7395293	N/A	2021/06/15	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7402234	2021/06/11	2021/06/11	Jeevaraj Jeevaratrnam
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7402448	N/A	2021/06/14	Yang (Philip) Yu

BV Labs ID: PTX972

Collected:

2021/06/08

Sample ID: MW-102D Matrix: Water

Shipped: Received:

2021/06/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	7395293	N/A	2021/06/15	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7402234	2021/06/11	2021/06/11	Jeevaraj Jeevaratrnam
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7402448	N/A	2021/06/15	Yang (Philip) Yu

BV Labs ID: PTX972 Dup

Collected: 2021/06/08

Sample ID: MW-102D Matrix: Water

Shipped:

Received: 2021/06/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7402234	2021/06/11	2021/06/11	Jeevaraj Jeevaratrnam
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7402448	N/A	2021/06/15	Yang (Philip) Yu

BV Labs ID: PTX973

Tost Description

Shipped:

A

Collected: 2021/06/08

Sample ID: MW-103

Received:

Matrix: Water 2021/06/08

Test Description	instrumentation	battn	Extracted	Date Analyzed	Anaiyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	7402385	N/A	2021/06/11	Joe Paino
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7402234	2021/06/11	2021/06/11	Jeevaraj Jeevaratrnam

BV Labs ID: PTX974 Collected:

2021/06/08

MW-106 Sample ID: Matrix: Water

Shipped: Received:

2021/06/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	7402385	N/A	2021/06/11	Joe Paino
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7402234	2021/06/11	2021/06/11	Jeevaraj Jeevaratrnam

BV Labs ID: PTX975

Sample ID: TRIP BLANK LOT#3699

Collected: 2021/06/08

Shipped:

Matrix: Water

Received: 2021/06/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	7395293	N/A	2021/06/14	Automated Statchk
Volatile Organic Compounds in Water	GC/MS	7402436	N/A	2021/06/13	Juan Pangilinan

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your P.O. #: MRK- GEO Sampler Initials: AS

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 5.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your P.O. #: MRK- GEO Sampler Initials: AS

			Matrix Spike		SPIKED	BLANK	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7402234	o-Terphenyl	2021/06/11	95	60 - 130	93	60 - 130	95	%		
7402385	1,4-Difluorobenzene	2021/06/11	89	70 - 130	89	70 - 130	92	%		
7402385	4-Bromofluorobenzene	2021/06/11	113	70 - 130	110	70 - 130	102	%		
7402385	D10-o-Xylene	2021/06/11	87	70 - 130	82	70 - 130	99	%		
7402385	D4-1,2-Dichloroethane	2021/06/11	101	70 - 130	99	70 - 130	101	%		
7402436	4-Bromofluorobenzene	2021/06/13	105	70 - 130	107	70 - 130	100	%		
7402436	D4-1,2-Dichloroethane	2021/06/13	101	70 - 130	100	70 - 130	103	%		
7402436	D8-Toluene	2021/06/13	101	70 - 130	102	70 - 130	95	%		
7402448	4-Bromofluorobenzene	2021/06/14	93	70 - 130	103	70 - 130	80	%		
7402448	D4-1,2-Dichloroethane	2021/06/14	110	70 - 130	98	70 - 130	110	%		
7402448	D8-Toluene	2021/06/14	104	70 - 130	109	70 - 130	92	%		
7402234	F2 (C10-C16 Hydrocarbons)	2021/06/11	95	60 - 130	97	60 - 130	<100	ug/L	NC	30
7402234	F3 (C16-C34 Hydrocarbons)	2021/06/11	95	60 - 130	98	60 - 130	<200	ug/L	NC	30
7402234	F4 (C34-C50 Hydrocarbons)	2021/06/11	100	60 - 130	102	60 - 130	<200	ug/L	NC	30
7402385	Benzene	2021/06/11	88	50 - 140	86	50 - 140	<0.20	ug/L	NC	30
7402385	Ethylbenzene	2021/06/11	94	50 - 140	94	50 - 140	<0.20	ug/L	NC	30
7402385	F1 (C6-C10) - BTEX	2021/06/11					<25	ug/L	NC	30
7402385	F1 (C6-C10)	2021/06/11	90	60 - 140	90	60 - 140	<25	ug/L	NC	30
7402385	o-Xylene	2021/06/11	92	50 - 140	91	50 - 140	<0.20	ug/L	NC	30
7402385	p+m-Xylene	2021/06/11	91	50 - 140	91	50 - 140	<0.40	ug/L	NC	30
7402385	Toluene	2021/06/11	86	50 - 140	85	50 - 140	<0.20	ug/L	NC	30
7402385	Total Xylenes	2021/06/11					<0.40	ug/L	NC	30
7402436	1,1,1,2-Tetrachloroethane	2021/06/13	97	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
7402436	1,1,1-Trichloroethane	2021/06/13	101	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
7402436	1,1,2,2-Tetrachloroethane	2021/06/13	100	70 - 130	100	70 - 130	<0.40	ug/L	NC	30
7402436	1,1,2-Trichloroethane	2021/06/13	101	70 - 130	102	70 - 130	<0.40	ug/L	NC	30
7402436	1,1-Dichloroethane	2021/06/13	91	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
7402436	1,1-Dichloroethylene	2021/06/13	95	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
7402436	1,2-Dichlorobenzene	2021/06/13	100	70 - 130	97	70 - 130	<0.40	ug/L	NC	30
7402436	1,2-Dichloroethane	2021/06/13	97	70 - 130	97	70 - 130	<0.49	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your P.O. #: MRK- GEO Sampler Initials: AS

			Matrix Spike		SPIKED	BLANK	Method	Blank	RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
7402436	1,2-Dichloropropane	2021/06/13	95	70 - 130	96	70 - 130	<0.20	ug/L	NC	30	
7402436	1,3-Dichlorobenzene	2021/06/13	98	70 - 130	95	70 - 130	<0.40	ug/L	NC	30	
7402436	1,4-Dichlorobenzene	2021/06/13	115	70 - 130	112	70 - 130	<0.40	ug/L	NC	30	
7402436	Acetone (2-Propanone)	2021/06/13	105	60 - 140	104	60 - 140	<10	ug/L	NC	30	
7402436	Benzene	2021/06/13	92	70 - 130	92	70 - 130	<0.20	ug/L	NC	30	
7402436	Bromodichloromethane	2021/06/13	102	70 - 130	102	70 - 130	<0.50	ug/L	NC	30	
7402436	Bromoform	2021/06/13	102	70 - 130	102	70 - 130	<1.0	ug/L	NC	30	
7402436	Bromomethane	2021/06/13	94	60 - 140	92	60 - 140	<0.50	ug/L	NC	30	
7402436	Carbon Tetrachloride	2021/06/13	97	70 - 130	97	70 - 130	<0.19	ug/L	NC	30	
7402436	Chlorobenzene	2021/06/13	99	70 - 130	99	70 - 130	<0.20	ug/L	NC	30	
7402436	Chloroform	2021/06/13	96	70 - 130	96	70 - 130	<0.20	ug/L	NC	30	
7402436	cis-1,2-Dichloroethylene	2021/06/13	100	70 - 130	100	70 - 130	<0.50	ug/L	NC	30	
7402436	cis-1,3-Dichloropropene	2021/06/13	101	70 - 130	99	70 - 130	<0.30	ug/L	NC	30	
7402436	Dibromochloromethane	2021/06/13	96	70 - 130	96	70 - 130	<0.50	ug/L	NC	30	
7402436	Dichlorodifluoromethane (FREON 12)	2021/06/13	89	60 - 140	88	60 - 140	<1.0	ug/L	NC	30	
7402436	Ethylbenzene	2021/06/13	94	70 - 130	96	70 - 130	<0.20	ug/L	NC	30	
7402436	Ethylene Dibromide	2021/06/13	97	70 - 130	97	70 - 130	<0.19	ug/L	NC	30	
7402436	Hexane	2021/06/13	95	70 - 130	96	70 - 130	<1.0	ug/L	NC	30	
7402436	Methyl Ethyl Ketone (2-Butanone)	2021/06/13	107	60 - 140	108	60 - 140	<10	ug/L	NC	30	
7402436	Methyl Isobutyl Ketone	2021/06/13	107	70 - 130	108	70 - 130	<5.0	ug/L	NC	30	
7402436	Methyl t-butyl ether (MTBE)	2021/06/13	95	70 - 130	96	70 - 130	<0.50	ug/L	NC	30	
7402436	Methylene Chloride(Dichloromethane)	2021/06/13	110	70 - 130	108	70 - 130	<2.0	ug/L	NC	30	
7402436	o-Xylene	2021/06/13	93	70 - 130	95	70 - 130	<0.20	ug/L	NC	30	
7402436	p+m-Xylene	2021/06/13	103	70 - 130	105	70 - 130	<0.20	ug/L	NC	30	
7402436	Styrene	2021/06/13	108	70 - 130	111	70 - 130	<0.40	ug/L	NC	30	
7402436	Tetrachloroethylene	2021/06/13	92	70 - 130	91	70 - 130	<0.20	ug/L	NC	30	
7402436	Toluene	2021/06/13	95	70 - 130	94	70 - 130	<0.20	ug/L	NC	30	
7402436	Total Xylenes	2021/06/13					<0.20	ug/L	NC	30	
7402436	trans-1,2-Dichloroethylene	2021/06/13	99	70 - 130	98	70 - 130	<0.50	ug/L	NC	30	
7402436	trans-1,3-Dichloropropene	2021/06/13	105	70 - 130	101	70 - 130	<0.40	ug/L	NC	30	

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your P.O. #: MRK- GEO Sampler Initials: AS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7402436	Trichloroethylene	2021/06/13	102	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
7402436	Trichlorofluoromethane (FREON 11)	2021/06/13	95	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
7402436	Vinyl Chloride	2021/06/13	93	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
7402448	1,1,1,2-Tetrachloroethane	2021/06/15	78	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
7402448	1,1,1-Trichloroethane	2021/06/15	82	70 - 130	104	70 - 130	<0.20	ug/L	NC	30
7402448	1,1,2,2-Tetrachloroethane	2021/06/15	83	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
7402448	1,1,2-Trichloroethane	2021/06/15	86	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
7402448	1,1-Dichloroethane	2021/06/15	77	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
7402448	1,1-Dichloroethylene	2021/06/15	76	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
7402448	1,2-Dichlorobenzene	2021/06/15	76	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
7402448	1,2-Dichloroethane	2021/06/15	83	70 - 130	94	70 - 130	<0.50	ug/L	NC	30
7402448	1,2-Dichloropropane	2021/06/15	83	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
7402448	1,3-Dichlorobenzene	2021/06/15	76	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
7402448	1,4-Dichlorobenzene	2021/06/15	90	70 - 130	116	70 - 130	<0.50	ug/L	NC	30
7402448	Acetone (2-Propanone)	2021/06/15	76	60 - 140	94	60 - 140	<10	ug/L	4.8	30
7402448	Benzene	2021/06/15	75	70 - 130	92	70 - 130	<0.20	ug/L	NC	30
7402448	Bromodichloromethane	2021/06/15	86	70 - 130	104	70 - 130	<0.50	ug/L	NC	30
7402448	Bromoform	2021/06/15	70 (1)	70 - 130	95	70 - 130	<1.0	ug/L	NC	30
7402448	Bromomethane	2021/06/15	66	60 - 140	84	60 - 140	<0.50	ug/L	NC	30
7402448	Carbon Tetrachloride	2021/06/15	78	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
7402448	Chlorobenzene	2021/06/15	77	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
7402448	Chloroform	2021/06/15	82	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
7402448	cis-1,2-Dichloroethylene	2021/06/15	80	70 - 130	82	70 - 130	<0.50	ug/L	NC	30
7402448	cis-1,3-Dichloropropene	2021/06/15	78	70 - 130	95	70 - 130	<0.30	ug/L	NC	30
7402448	Dibromochloromethane	2021/06/15	88	70 - 130	89	70 - 130	<0.50	ug/L	NC	30
7402448	Dichlorodifluoromethane (FREON 12)	2021/06/15	50 (1)	60 - 140	60 (1)	60 - 140	<1.0	ug/L	NC	30
7402448	Ethylbenzene	2021/06/15	75	70 - 130	97	70 - 130	<0.20	ug/L	14	30
7402448	Ethylene Dibromide	2021/06/15	76	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
7402448	F1 (C6-C10) - BTEX	2021/06/15					<25	ug/L	20	30
7402448	F1 (C6-C10)	2021/06/15	91	60 - 140	94	60 - 140	<25	ug/L	19	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your P.O. #: MRK- GEO Sampler Initials: AS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	ס
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7402448	Hexane	2021/06/15	79	70 - 130	108	70 - 130	<1.0	ug/L	NC	30
7402448	Methyl Ethyl Ketone (2-Butanone)	2021/06/15	86	60 - 140	92	60 - 140	<10	ug/L	NC	30
7402448	Methyl Isobutyl Ketone	2021/06/15	89	70 - 130	105	70 - 130	<5.0	ug/L	NC	30
7402448	Methyl t-butyl ether (MTBE)	2021/06/15	71	70 - 130	91	70 - 130	<0.50	ug/L	NC	30
7402448	Methylene Chloride(Dichloromethane)	2021/06/15	90	70 - 130	113	70 - 130	<2.0	ug/L	NC	30
7402448	o-Xylene	2021/06/15	76	70 - 130	101	70 - 130	<0.20	ug/L	14	30
7402448	p+m-Xylene	2021/06/15	76	70 - 130	102	70 - 130	<0.20	ug/L	11	30
7402448	Styrene	2021/06/15	82	70 - 130	112	70 - 130	<0.50	ug/L	NC	30
7402448	Tetrachloroethylene	2021/06/15	65 (1)	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
7402448	Toluene	2021/06/15	76	70 - 130	101	70 - 130	<0.20	ug/L	20	30
7402448	Total Xylenes	2021/06/15					<0.20	ug/L	14	30
7402448	trans-1,2-Dichloroethylene	2021/06/15	73	70 - 130	97	70 - 130	<0.50	ug/L	NC	30
7402448	trans-1,3-Dichloropropene	2021/06/15	80	70 - 130	99	70 - 130	<0.40	ug/L	NC	30
7402448	Trichloroethylene	2021/06/15	75	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
7402448	Trichlorofluoromethane (FREON 11)	2021/06/15	73	70 - 130	93	70 - 130	<0.50	ug/L	NC	30
7402448	Vinyl Chloride	2021/06/15	70	70 - 130	87	70 - 130	<0.20	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The recovery was below the lower control limit. This may represent a low bias in some results for this specific analyte.

Client Project #: BRM-21010864-B0

Site Location: 15450 WOODBINE AVENUE, GORMLEY

Your P.O. #: MRK- GEO Sampler Initials: AS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

08-Jun-21 15:25

Patricia Legette

AF2

1

2

3

4

5

6

7

8

9

10

Presence of Visible Particulate/Sediment

Maxxam Analytics CAM FCD-01013/5 Page 1 of 1

When there is >1cm of visible particulate/sediment, the amount will be recorded in the field below

Bottle Types ENV-1164 Inorganics **Organics** Hydrocarbons Volatiles Other Pest/ Pest/ SVOC/ SVOC/ PCB Metals Organic Organic PCB PAH PAH Dioxin F1 F1 F2-F4 F2-F4 voc VOC voc Sample ID All Herb Herb ABN ABN 1 of 2 2 of 2 1 of 2 2 of 2 CrVI CN General Hg F4G (Diss.) 1 of 2 2 of 2 1 of 2 2 of 2 1 of 2 2 of 2 /Furan Vial 1 Vial 2 Vial 3 Vial 4 1 of 2 2 of 2 Vial 1 Vial 2 Vial 3 Vial 4 MW-102 15 HW-102D HW-103 MW-106 Comments: Legend: FUL/46-KANDERS FOROK Suspended Particulate Recorded By: (signature/print) Trace Settled Sediment (just covers bottom of container or less) Sediment greater than (>) Trace, but less than (<) 1 cm

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266 CAM FCD-01191/3

CHAIN OF CUSTODY RECORD	1231

Invoice Info	ormation		Report I	nformation	(if differ	s from	invoic	e)			Project Information (where applicable)					licable)	Î	Turnaround Time (TAT) Required		
Company Name: # 17485 EXP	Services Inc.	Company N	lame: _	EXPS	crunca	J	nc.		THE Y		Quotation	Quotation#: B91718 Stesom 3				3	TIME.	Regular TAT (5-7 days) Most analyses		
Contact Name: Confine Ser	vices	Contact Nar	me:	So Min	chi	cine.	S	40.07	Can		P.O. H/ AFEH: MRK - GEO						PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS			
Address: 220 Comerce V	Calley Dr. W. Suite 500	Address:		So Mun	ndar	So	rie.			•	Project #:			31010	864	-BO	luke.		Rush TAT (Surcharges will be applied)	
Markham, 01				N. J.	N NUI	5 8					Site Locati			Woodb			Gor	mler	1 Day 2 Days 3-4 Days	
TIEST OF THE T	Fax:	Phone:	Simon lan	ackb (nm F	ax: 5	omine	9. 0	hienge	Perp.	Site #:			tocio	11 - 2			I)		
Email: AP Dexp. com; kare	n.burks@exp.com	Email:	aleksand	or Saci	000	×6.0	com	_	U	'	Sampled B	ly:	AS			6 48			Date Required:	
	LATED DRINKING WATER OR WATER	INTENDED FOR I	HUMAN CONSU	IMPTION M	UST BE	SUBM	ITTED C	нт ис	E MAX	KAM DR	INKING WAT	TER CH	AIN OF CL	STODY		118	240	8	Rush Confirmation #:	
Regulation 153 Table 1 Res/Park		Other Regul					_		_	_	Analysis	Reque	sted		_				LABORATORY USE ONLY	
Table 2 Ind/Comm Table 3 Agn/ Other Table FOR RSC (PLEASE CIRCLE) N	Med/ Fine CCME Coarse MISA PWCC Other REG 5:	Storm Se Region			TED	fetals / Hg / CrVI			ANICS		WS - 8)								CUSTODY SEAL Y / N COOLER TEMPERATURES Present Intact Y / Y STS	
Include Criteria on Certificate of Analysis:	Y/N	G TEN			UBMIT	CLE) N			NORG	IALS	etals, H					П		LYZE		
SAMPLES MUST BE KEPT COOL	(< 10 $^{\circ}$ C) FROM TIME OF SAMPLIN	S UNTIL DELIVER	Y TO MAXXAM		NERS S	ED (CIR	_		MISS	MS ME	ETALS ICPMS M					П		NOT ANALYZE		
SAMPLE IDENTIFICA		TE SAMPLED T	TIME SAMPLED (HH:MM)	MATRIX	# OF CONTAI	FIELD FILTER	BTEX/ PHC F	PHCs F2 - F4	VOCs REG 153 METAL	153	REG 153 MET (Mg. Cr VI, ICI							HOLD- DO NO	COMMENTS	
1 MW-102	21	21/06/08	9:23am	ow	4		1	1	/							Ħ				
2 NW-102D	-2		9:23cm		4		1	~	1											
3 MW-103			10:36am		4		1	1												
4 MW- 10G			10:05 em		4		v :	/												
5 Trip Blank Cot	# 3699	V		V	2	3			~											
6																				
7																		F		
8		3			II AU													Will		
9														\prod		\Box	1			
10						jir.		1						11		\Box		7		
RELINQUISHED BY: (Signature)	/Print) DATE: (YYYY	/MM/DD)	TIME: (HH:MN			_	IVED BY					D	ATE: (YYYY	/MM/DD)		TIME: (нн:мм	1)	08-Jun-21 15:25	
Alla Savie Alch	bonder Sans 2011 a	108	11:30am		vze.	1/6	me	4	M	Rec	~4	2	n/s	6/08		150	z		Patricia Legette	
Unless otherwise agreed to in writin	g, work submitted on this Cha	in of Custody	is subject to	Maxxam's	s stano	land 1	Terms	and i	Condit	inne	Signing of	thic /	hain of	Custodia	dague	ant ic	noko-	ulo	un develorati consi de recesso	

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Maxxam's standard Terms and Conditions. Signing of this Chain of Custody document is acknowned available for viewing at www.maxxam.ca/terms. Sample container, preservation, hold time and packages information can be viewed at http://maxxam.ca/wp-content/uploads/Ontario-COC.pdf.

COC-1004 (03/17)

White: Maxxam ~ Yellow: Client

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GORMLEY

Client ID: MW-102

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GORMLEY

Client ID: MW-102D

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

BV Labs Job #: C1F6446 Report Date: 2021/06/15

BV Labs Sample: PTX972 Lab-Dup

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GORMLEY

Client ID: MW-102D

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GORMLEY

Client ID: MW-103

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

exp Services Inc

Client Project #: BRM-21010864-B0

Project name: 15450 WOODBINE AVENUE, GORMLEY

Client ID: MW-106

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Phase II Environmental Site Assessment 15374 and 15450 Woodbine Avenue, Gormley, Ontario Project Number: BRM-21010864-B0 June 17, 2021

Appendix E – Grain Size Analysis Results

exp Services Inc. 1595 Clark Boulevard, Brampton Ontario, Canada, L6T 4V1 Telephone: (905) 793-9800 Fax: (905) 793-0641

Grain Size Analysis & Hydrometer Test Report

ST08

Sample Test No.: $\underline{370684-1}$ Report No.: $\underline{1}$ Date Reported: $\underline{15-Jun-21}$

Project No.: <u>brm-21010864-a0 c100</u>

Project Name: Preliminary Geo. Investigation & Phase I ESA

Grain Size Proportion (%)

 $\begin{array}{lll} \text{Gravel (> 4.75mm):} & 0.3 \\ \text{Sand (> 75\mu\text{m}, < 4.75mm):} & 7.3 \\ \text{Silt (> 2$\mu\text{m}), < 75$\mu\text{m}):} & 69.2 \\ \text{Clay (< 2$\mu\text{m}):} & 23.2 \\ \text{Total:} & 100.0 \\ \end{array}$

Sample Information

Location: $\underline{BH 6}$ Sample Method: \underline{SS}

Sample No.:

Depth: 1.5 - 2.0 m

Sample Description: Clayey Silt, trace Sand and Gravel; Brown

Sampled By: exp Markham
Sampling Date: 5/27/2021
Date Received: 6/9/2021

Client Sample ID: Comments:

Grain Size (mm)	% Passing	Grain Size (mm)	% Passing		
26.5	100.0	0.0374	90.3		
22.4	100.0	0.0268	87.9		
19	100.0	0.0172	84.7		
16	100.0	0.0104	75.4		
13.2	100.0	0.0076	66.0		
12.5	100.0	0.0056	54.5		
9.5	100.0	0.0030	31.8		
6.7	100.0	0.0013	17.1		
4.75	99.7				
2	98.1				
0.85	97.3				
0.425	96.0				
0.25	95.2				
0.18	94.6				
0.15	94.1				
0.075	92.3				
0.053	91.2				

UNIFIED SOIL CLASSIFICATION SYSTEM

Project Manager: Clement Chow Approved By: Original Signed By Date Approved: 15-Jun-21

Willie Rodych, Lab Supervisor

exp Services Inc. 1595 Clark Boulevard, Brampton Ontario, Canada, L6T 4V1 Telephone: (905) 793-9800 Fax: (905) 793-0641

Grain Size Analysis & Hydrometer Test Report

Date Reported: 15-Jun-21

ST08

Sample Test No.: 370685-1

Report No.: 2

Project No.: <u>brm-21010864-a0 c100</u>

Project Name: Preliminary Geo. Investigation & Phase I ESA

Grain Size Proportion (%)

 $\begin{array}{lll} \text{Gravel (> 4.75mm):} & 1.8 \\ \text{Sand (> 75\mu\text{m}, < 4.75mm):} & 41.9 \\ \text{Silt (> 2$\mu\text{m}), < 75$\mu\text{m}):} & 43.3 \\ \text{Clay (< 2$\mu\text{m}):} & 13.0 \\ \text{Total:} & 100.0 \\ \end{array}$

Sample Information

Location: BH 11
Sample Method: SS

Sample No.:

Depth: 1.5 - 2.0 m

Sample Description: Silt and Sand, some Clay; trace Gravel; Brown

 Sampled By:
 exp Markham

 Sampling Date:
 5/27/2021

 Date Received:
 6/9/2021

Client Sample ID: Comments:

Grain Size (mm)	% Passing	Grain Size (mm)	% Passing				
26.5	100.0	0.0451	45.0				
22.4	100.0	0.0323	41.0				
19	100.0	0.0209	34.9				
16	100.0	0.0123	29.7				
13.2	100.0	0.0088	25.7				
12.5	100.0	0.0063	22.1				
9.5	100.0	0.0031	16.5				
6.7	99.5	0.0013	10.7				
4.75	98.2						
2	96.4						
0.85	93.6						
0.425	89.6						
0.25	82.4						
0.18	76.7						
0.15	71.9						
0.075	56.3						
0.053	48.2						

UNIFIED SOIL CLASSIFICATION SYSTEM

Project Manager: Clement Chow Approved By: Original Signed By

Willie Rodych, Lab Supervisor

Date Approved: 15-Jun-21

exp Services Inc. 1595 Clark Boulevard, Brampton Ontario, Canada, L6T 4V1 Telephone: (905) 793-9800 Fax: (905) 793-0641

Grain Size Analysis Test Report

ST06-Soil

Sample Test No.: <u>370686-1</u> **Report No.:** <u>1</u>

Project No.: <u>brm-21010864-a0 c100</u>

Project Name: Preliminary Geo. Investigation & Phase I ESA

Sample Information

Borehole No.: BH 12 Sample Method: SS

Sample No.:

Depth: 0.75 - 1.2 m

Sample Description:

Sampled By:exp MarkhamSampling Date:27-May-2021Date Received:9-Jun-2021

Client Sample ID:

Comments:

Sieve Size	% Passing
(mm)	Sample
26.5	100.0
22.4	100.0
19.0	100.0
16.0	100.0
13.2	100.0
12.7	100.0
9.5	100.0
6.7	100.0
4.75	100.0
2.00	100.0
0.850	99.8
0.425	99.5
0.250	94.9
0.180	86.3
0.150	76.6
0.075	32.5
0.053	17.4
NT 4	*Out of Specification

Date Reported: 14-Jun-2021

Notes: *Out of Specification

UNIFIED SOIL CLASSIFICATION SYSTEM

Project Manager: Clement Chow Approved By: Original Signed By Date Approved: 14-Jun-2021

Willie Rodych